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Talk Overview

The ‘right’ kind of  evidence

Algorithmic bias and fairness

Explainable AI?

What makes a ‘good’ decision with AI?



‘DEPLOY’ AI IN HEALTHCARE



We need technical validation + clinical evaluation

Model performance in silico Model in live data environment

The right kind evaluation



Responsible evaluation: 
more than just accuracy

‘Clash of  cultures’: from technical validation to clinical evaluation and validation

Wongvibulsin & Zeger, 2020 BMJ Evidence-Based Medicine



Good technical performance does not always 
translate into patient benefit

• Advanced screening for certain cancers1

• Increased healthcare spending, patient anxiety, low value

• ‘Diagnostic downshift’?2

• Potential to increase workload without added value to patient care3,4

• Presumptions of  low-risk may be ethically vulnerable5,6

1Shieh et al., 2016; 2Sajid, Frost, & Paul 2021 BMJ Ev Based Med; 3Tomašev et al., 2019 Nat; 4Connell et al., 2019 J 

Med Internet Res; 5Wilson et al., 2021 BMJ; 6Wilson 2021 BMJ; 



Exploratory Silent trial
Prospective 
Evaluation



Exploratory

Silent trial

Prospective 
Evaluation



Responsible use of  AI

• The current dominant approaches to validation are not well 
aligned with the informational needs of  clinicians

• Considering ML models as components of  an intervention 
ensemble may provide an empirical warrant for the judicious 
use of  clinical AI to promote patient benefit*

*McCradden MD, Joshi S, Anderson JA, London AJ. Work in progress



Clinical Evidence

Novel Interventions

Responsible Translation:

• Patient Benefit

• Contribution to medical 

knowledge system

• Reliability

• Aligning with 

informational needs



Responsible translation – for all?
Fairness









‘Algorithmic’ bias?



Is poor performance a harm in itself ?

• Though often conceptualized under nonmaleficence, discrepant 
algorithmic performance is not necessarily a harm per se
• Centres the model performance in conceptualizing a harm → displaces people as 

the subjects of  harm

• E.g., in Obermeyer’s (2019) paper they note that physicians likely redressed some 
of  the observed algorithmic bias

• Some biases may not be correctable in the short-term

• What are some ways we can redistribute or redress these biases?
• E.g., predicting no-shows



Can AI ‘see’ a patient’s race?

• DL can “trivially detect” patient race based solely on 
image pixel data across an array of  clinical tasks

• No obvious reasons identified by the authors

• “A direct vector for the reproduction or exacerbation 
of  the racial disparities that already exist in medical 
practice”

Banerjee et al., 2021 “Reading Race: AI Recognizes Patient’s Racial Identity In Medical Images” 

https://arxiv.org/pdf/2107.10356.pdf



Distributive Justice

• Are benefits and burdens distributed 
equally?

• Address the distribution? Or redress 
residual discrepancies?

• How we adjudicate between these 
approaches is fundamentally an 
ethical endeavour

“Diversity Hands” by Oswaldo Guayasamin



• Decisions about bias require two axes of  consideration
• Epistemic: what do we know about why these patterns are apparent?

• Empirical: how will we evaluate the model’s performance?

• Fairness is not simply achieved through model performance alone
• E.g., referral parity vs outcome predictions

• Distributive Justice = characterize empirical performance & make ethical 
decisions for translation and clinical use



“Beware the veneer of  technical neutrality”
Dr. Ruha Benjamin



Explainability
Is explainability the answer? Or does it raise more problems?



Explainable AI (XAI)

Generally, XAI focuses on helping the user ‘understand’:

• how the model works as a system

• how it arrived at a particular prediction



Ethical motivations for explainable AI

• Responsible AI-inclusive decision-making

• Informed consent and assent of  patients and families

• Transparency

Does explainability actually achieve the ethical goals for 

which it is intended? 

Does it pose other concerns?



Criticisms of  XAI

• Computational explanations are sometimes not relevant for clinical decisions, do not 
reflection the metrics clinicians really care about1,2

• Many proposed explanations do not actually require machine learning, but are more about 
human-computer interaction or engineering3

• Concerns about over-trust (act on wrong outputs): user uncertainty, task complexity, and 
specific clinicians may be particularly likely to over-trust4

• These risks are not restricted to ‘black box’ systems alone

− If  opacity was the problem, explanations would prevent acting on wrong outputs; this is not 
what appears to be happening

1Lindsell et al. "Action-Informed Artificial Intelligence—Matching the Algorithm to the Problem" 2020 JAMA; 2Lipton "The Mythos of  Model 

Interpretability" 2016 ICML; 3Poursabzi-Sangdeh et al, "Manipulating and measuring model interpretability" 2021; 4Ghassemi, "Don't Expl-AI-n 

Yourself" 2020 C4E Talks



Case 1: Radiological reports

• Chest X-rays reports from CHEST-AI or Expert Radiologist

• Negative effect overall from receiving incorrect information (regardless of  source), 
radiologists less so than internal/emergency medicine physicians

• Some clinicians are highly susceptible to incorrect advice while others are not

Gaube, S., Suresh, H., Raue, M. et al. “Do as AI say: susceptibility in deployment of  clinical decision-aids” 2021 npj Digit. Med



Case 2: Skin cancer recognition

• Prediction of  7 distinct skin cancers

• Predictions = correct→ clinician accuracy improved

• Predictions = incorrect → clinicians were often misled

• Changing one’s mind was correlated with pre-prediction 
confidence

• Evident across the spectrum of  clinical experience

Tschandl et al., "Human–computer collaboration for skin cancer recognition" 2020 Nat Med



Case 3: Antidepressant prescribing

• Expert-generated ranking of  ADs given patient 
scenarios = simulated ML model

• Systematically varied scenario, prediction 
accuracy, and explanation

• Any explanation increased likelihood to 
follow incorrect predictions

• Following incorrect predictions happened 
mostly with feature-based explanations

Jacobs et al., "How machine-learning recommendations influence clinician treatment selections: the example of  the antidepressant 

selection" 2021 Translational Psychiatry



Are the explanations reliable?

• Explanations may not always provide accurate, relevant ‘reasons’ for their predictions1

• We assume that models are using information the same way that we do2

1Adebayo et al., 2018 ”Sanity checks for saliency maps" 2018 NeurIPS; 2Rudin “Stop explaining black box machine learning models 

for high stakes decisions and use interpretable models instead Nat Med Intell



CheXplanation

• Explanations highlight both relevant and non-relevant information

• Accuracy of  explanations is correlated with model confidence

• … most reliable and most ‘correct’ in the clearest cases

1Saporta et al. “Deep learning saliency maps do not accurately highlight diagnostically relevant regions for medical image 

interpretation.” medRxiv. 2021 Jan 1.





Is the black box 
really the problem?

• Clinicians are motivated to use the best 
available evidence to care for patients

• Evidence comes through clinical 
evaluations, not AUCs!

• If  AI is believed to be superior as a 
form of  knowledge, then it may seem 
reasonable to rely on its predictions

• But this is only part of  the picture of  
how clinical decisions are made…



So how should we make AI-
informed decisions?
Toward a humanistic vision of  medicine augmented by AI



Medicine is a complex system



Multiple axes of  knowledge

• ML formalizes one particular axis of  knowledge in relation to a larger 
clinical decision that needs to be made1

• E.g., antidepressant prescribing2

• “Clinical decisions are not made solely on the basis of  the biological, 
physiological, and medical information supplied to the clinicians” 3

(Dr. Roxanne Kirsch)

1McCradden, 2021 Transl Psych; 2Jacobs et al., 2021 Transl Psych; 3McCradden & Kirsch, in progress



What is a ‘good’ decision with AI?

• Prospective qualitative study with clinicians (physicians, nurses, 
respiratory therapists) in intensive care, emergency medicine, and other 
acute care settings, and machine learning experts 

• Case of  ‘Siri’ simulated a typical handover in the ICU at SickKids

• Siri (4mos, 5kg):
• Ventricular septal defect (Repaired); grade 2 subglottic stenosis and 

tracheomalacia; Trisomy 18

• Participants asked about their plan for Siri for the day wrt exubation

• Offered prediction of  extubation readiness from simulated ML model 

McCradden MD, Thai K, Assadi A, Tonekaboni S, Joshi S, Chevalier F, Zhang M, Goldenberg A. In progress



What is a ‘good’ decision with AI?

McCradden MD, Thai K, Assadi A, Tonekaboni S, Joshi S, Chevalier F, Zhang M, Goldenberg A. In progress

(1) Model card: documentation of general performance 

characteristics and use-case (Mitchell et al).

https://dl.acm.org/doi/abs/10.1145/3287560.3287596?casa_token=eK2Bu-Gc8P0AAAAA:k2KRaw9KN-pL0CYERQKZIke97gCwKG-k54rohbVk0Pv9Gcexj58GRJT9Kwx1HQ4jZDG_dziRS10


What is a ‘good’ decision with AI?

McCradden MD, Thai K, Assadi A, Tonekaboni S, Joshi S, Chevalier F, Zhang M, Goldenberg A. In progress

(2) Feature importance: Quantifying the influence of each 

input feature on the individual prediction (Lundberg et al). 

https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf


What is a ‘good’ decision with AI?

McCradden MD, Thai K, Assadi A, Tonekaboni S, Joshi S, Chevalier F, Zhang M, Goldenberg A. In progress

(3,4) Temporal explanation: Quantifying the 

influence of each input feature at different points 

in time on the individual prediction (Tonekaboni 

et al, Hardt et al)

https://proceedings.neurips.cc/paper/2020/file/08fa43588c2571ade19bc0fa5936e028-Paper.pdf
https://dl.acm.org/doi/abs/10.1145/3368555.3384460


What is a ‘good’ decision with AI?

McCradden MD, Thai K, Assadi A, Tonekaboni S, Joshi S, Chevalier F, Zhang M, Goldenberg A. In progress

(5) Population-level explanation:

Contextualizing the individual model 

prediction in the training population



What is a ‘good’ decision with AI?

McCradden MD, Thai K, Assadi A, Tonekaboni S, Joshi S, Chevalier F, Zhang M, Goldenberg A. In progress

(6) Counterfactual/forecasting explanation:

Estimating future outcomes depending on an 

action (Ates et al, Delaney et al)

https://ieeexplore.ieee.org/abstract/document/9462056?casa_token=VY8D3U4VEdMAAAAA:UzmD7q3eI_c5Zoskm3kJKqoFvJERLZa4EDC5QNoF947mOzyCt6_8L9pQBTxcuwlxr5WvNmu74W8
https://link.springer.com/chapter/10.1007/978-3-030-86957-1_3


What is a ‘good’ decision with AI?

McCradden MD, Thai K, Assadi A, Tonekaboni S, Joshi S, Chevalier F, Zhang M, Goldenberg A. In progress

(7) High-level feature importance 

explanation





Making morally good decisions

1. AI systems evaluated prospectively in a clinical environment

2. Information generated through this evaluation is aligned with the 
informational needs of  the clinicians using the model

3. Clinical judgment may be calibrated using the evidence generated 
supporting the AI system

4. Particular attention must be paid to the model’s performance on 
particular patient subgroups

5. Patient and family goals and values remain the guideposts – always 
acting to use medical knowledge to further the interests of  patients 

Key to the vision of  using AI to make medicine more ‘human’



It’s not just about ‘right’ or ‘wrong.’

It’s about morally good decisions in 
a highly complex system.
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Outline

• NIH Office of Data Science Strategy
• NIH Data Ecosystem 

• Data 
• STRIDES
• NCPI

• AI Activities
• AIM-AHEAD
• B2AI
• ODSS



National Institutes of Health Institutes, Centers, and Offices



NIH Strategic Plan for Data Science
VISION:  

A modernized, integrated, FAIR, 
biomedical data ecosystem

https://datascience.nih.gov/

https://datascience.nih.gov/


Strategic Plan for Data Science: Goals and Objectives

Data Infrastructure

Optimize data 
storage and 

security

Connect NIH data 
systems

Modernized Data 
Ecosystem

Modernize data 
repository 

ecosystems

Support storage 
and sharing of 

individual datasets

Better integrate 
clinical and 

observational data 
into biomedical 
data science

Data Management, 
Analytics, and Tools

Support useful, 
generalizable, and 
accessible tools 

Broaden utility of, 
and access to, 

specialized tools

Improve discovery 
and cataloging 

resources

Workforce 
Development

Enhance the NIH 
data science 

workforce

Expand the 
national research 

workforce

Engage a broader 
community

Stewardship and 
Sustainability

Develop policies 
for a FAIR data 

ecosystem

Enhance 
stewardship

https://datascience.nih.gov

https://datascience.nih.gov/


Domain/Data-specific
Open Access Data Sharing Repositories 

as a first choice.
https://www.nlm.nih.gov/NIHbmic/nih_data_sharing_repositories.html

NIH: Distributed Heterogeneous Repository Ecosystem

Stores publication-related 
supplemental materials and 
datasets directly associated 

publications.

Datasets up to 2 gigabytes

PubMed Central Generalist Repositories
(GREI Program)

Datasets up to 20 gigabytes

Datasets associated with 
publications or otherwise and 

links to PubMed. 

Cloud Partners
(STRIDES, RAS, ICOs, etc.)

Store and manage large scale, 
high priority NIH datasets.

High priority datasets, petabyte-scale

Consistent with Desirable Characteristics: https://grants.nih.gov/grants/guide/notice-files/NOT-OD-21-016.html 

https://datascience.nih.gov/strides
https://datascience.nih.gov/researcher-auth-service-initiative
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FY21:  NOT-OD-21-089

Support for existing data repositories to align 
with FAIR and TRUST principles and evaluate 
usage, utility, and impact
ODSS provided funding for existing repositories 
of all sizes, and at different stages of 
establishment to:
• Increase “FAIR”-ness and “TRUST”-

worthiness
• Improve their usage, utility, and impact

throughout the data resource lifecycle.

Positioning Repositories for Data Sharing
FY22:  NOT-OD-22-069

Data resources are key enablers of modern biomedical research. Awards promote data sharing 
by lowering barriers and reducing or eliminating silos. These shifts allows for the discovery and 
use of data, enabling better secondary use of data. ODSS promotes the implementation of best 
practices, increases reproducibility of research, and optimizes efficiency of operations and 
costs for data resources

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175/
https://datascience.nih.gov/sites/default/files/NIH_Workshop_on_Trustworthy_Data_Repositories_Report_7-8-2019%20FINAL.pdf
https://grants.nih.gov/grants/guide/notice-files/NOT-OD-22-069.html


Optimized Funding for NIH Data Repositories and Knowledgebases

• Data resources are important 
research tools

• Historically funded through research 
grants

• Funding mechanism should be 
optimal for type of resource

• End goal: researcher confident in 
data and information integrity

• Solution: New Funding 
Announcement for data 
repositories and knowledgebases

• Resource plan requirement

Scientific 
Impact

Community 
Engagement

Quality of Data 
and Services 

and Efficiency 
of Operations

Governance

PAR-20-089 and PAR-20-097

https://grants.nih.gov/grants/guide/pa-files/PAR-20-089.html
https://grants.nih.gov/grants/guide/pa-files/PAR-20-097.html


NEW: The Generalist Repository Ecosystem Initiative

Implement consistent 
capabilities (NOT-OD-21-016)

Create better access to & 
discovery of NIH funded data

Conduct outreach & train on 
FAIR data practices

Engage the research 
community

Make data sharing easier

Improve discoverability

Increase reproducibility of 
research

Encourage secondary use 
of data

Solicit applications from generalist 
repositories working together to:

Expected Outcomes



Enhance the biomedical data-science research workforce through improved programs 
and novel partnerships.

10

STRIDES Initiative (The Science and Technology Research Infrastructure for 
Discovery, Experimentation, and Sustainability) provides:

• State-of-the-art data storage and computational capabilities

• Training and education for researchers​

• Innovative technologies such as artificial intelligence and machine learning​

• Professional engineering and technical support 

Partnerships with: 
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Compute 
Hours

201M
Petabytes of 

Data

>163

People Trained
>4081

NIH & NIH-funded 
Research 

Programs/ 
Projects

>693

Cost Savings
$28M

https://datascience.nih.gov/strides
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Administrative Coordinating Center for the 
NIH Cloud Platform Interoperability (NCPI) Program

NCPI
• High-value NIH datasets are stored in multiple 

repositories hosted by individual institutes and 
centers

• NCPI will enable a federated data eco-system to 
facilitate cross-platform data analysis

OTA-22-004 NCPI Administrative Coordinating Center
NIH invites applications to provide technical, 
administrative, and coordination support for the NIH 
Cloud Platform Interoperability program (NCPI).
• LOIs due:  April 15, 2022
• Full Proposals due:  June 1, 2022

https://datascience.nih.gov/sites/default/files/NCPI-ROA-20220316.pdf


The Workshop explored current capabilities, gaps and opportunities for global 
data search across the data ecosystem with these main themes:

• Using search to build cohorts: finding data across different 
platforms/repositories using patient attributes in order to create a cohort of 
patients for clinical analysis

• Using search to find relevant data & repositories: finding data & repositories 
in order to access and analyze the data further, including its use for creating 
computational models.

• Using search for (complex) information retrieval: answering specific 
questions without the additional burden of data download or analysis

Link

https://web.cvent.com/event/9eec8239-babb-4beb-a0fe-45945e00bc4e/summary


AI



Biomedical AI: Visions for an ETHICAL Future
NIH ACD AI Working Group Recommendations:

- Outlined opportunities to 
fuse AI/ML with 
exponential increase in 
biomedical data

- Ethics was identified as 
equally important to Data 
and People, reflecting the 
primary importance of 
infusing ethical thinking 
into AI/ML use in 
biomedical research

https://www.acd.od.nih.gov/documents/presentations/12132019AI_FinalReport.pdf

https://www.acd.od.nih.gov/documents/presentations/12132019AI_FinalReport.pdf


Ethical AI/ML: A hot topic across federal agencies

“Americans have not yet grappled with just how profoundly the 
artificial intelligence (AI) revolution will impact our economy, 
national security, and welfare….The AI competition is also a 
values competition.”

Strategic Pillars: Innovation; Advancing Trustworthy AI; Education 
and Training; Infrastructure; Applications; International 
Cooperation

Partnering with academia, industry and government, HHS will 
leverage AI to solve previously unsolvable problems by 
continuing to lead advances in the health and wellbeing of 
the American people, responding to the use of AI across the 
health and human services ecosystem, and scaling trustworthy 
AI adoption across the Department.

In the process of developing an A.I. Bill of Rights



Artificial Intelligence/Machine Learning Consortium to Advance 
Health Equity and Researcher Diversity (AIM-AHEAD) 

Partnerships Research

Infrastructure Training

Goals: 
• to enhance the participation and representation

of researchers and communities currently 
underrepresented in the development of artificial 
intelligence and machine learning (AI/ML) models 

• to address health disparities and inequities using 
AI/ML

• to improve the capabilities of this emerging 
technology, beginning with the use of electronic 
health record (EHR) and extending to other 
diverse data 

https://aim-ahead.net/
https://datascience.nih.gov/artificial-intelligence/aim-ahead

https://aim-ahead.net/
https://datascience.nih.gov/artificial-intelligence/aim-ahead


Community Input Shaped the Initial Phase
• AIM-AHEAD will develop a consortium 

of organizations and institutions that
 wish to develop capabilities in AI/ML
 wish to build a more inclusive basis for 

AI/ML
 have a core mission to serve health 

disparity populations.
Begin with a two-year planning, 

assessment, and capacity building 
phase

Establish a Coordinating Center with 
the essential expertise in AI/ML and 
health disparities research, data 
science training, and data and 
computing infrastructure

There is a wide variety of interests, 
needs, and resources across 
communities.



The AIM-AHEAD Coordinating Center

Leadership

InfrastructureData and 
Research

Data Science 
Training

Regional 
Hubs

Leadership Core
Jamboor K. Vishwanatha, Ph.D.
University of North Texas Health Science Center 
in Fort Worth

Regional Hubs
Toufeeq Ahmed, Ph.D.
Vanderbilt University Medical Center
Bettina Beech, Dr.P.H.
University of Houston
Harlan P. Jones, Ph.D.
University of North Texas Health Science Center in 
Fort Worth
Spero Manson, Ph.D.
University of Colorado-Anschutz Medical Center in 
Aurora
Keith Norris, M.D., Ph.D.
University of California, Los Angeles
Anil Shanker, Ph.D.
Meharry Medical College in Nashville, Tennessee
Herman Taylor, M.D.
Morehouse School of Medicine in Atlanta, Georgia
Roland J. Thorpe, Jr., Ph.D.
Johns Hopkins University in Baltimore, Maryland

Data Science Training Core
LegandL. Burge, Ph.D.
Howard University in 
Washington, D.C.

Infrastructure Core
Alex J. Carlisle, Ph.D.
National Alliance Against 
Disparities in Patient Health in 
Woodbridge, Virginia
Paul Avillach, M.D., Ph.D.
Harvard Medical School in 
Boston, Massachusetts
Bradley A. Malin, Ph.D.
Vanderbilt University Medical 
Center in Nashville, Tennessee

Data and Research Core
Jon Puro, M.P.A.
OCHIN in Portland, Oregon

https://aim-ahead.net/

https://aim-ahead.net/


AIM-AHEAD Partnership Map

55 INSTITUTIONAL PARTNERS IN AIM-AHEAD CONSORTIUM



“…we need to build on programs like the new NIH AIM-AHEAD (or at least ensure their 
funding continues), to not only make sure diversity is covered in biomedical data sets, 
but diversity is promoted and enhanced among the data scientists themselves.” 

-- Atul Butte, MD, PhD, Priscilla Chan, and Mark Zuckerberg Distinguished Professor, University of 
California, San Francisco, Director, Bakar Computational Health Sciences Institute and Chief Data 
Scientist, University of California Health 

“I never anticipated the appetite for this initiative in [the American Indian, Alaskan 
Native, and Hispanic] communities… There is a thirst for this.” 

-- Spero Manson (Pembina Chippewa), Distinguished Professor of Public Health and Psychiatry, Director 
for the Centers for American Indian and Alaska Native Health, Associate Dean of Research at the 
Colorado School of Public Health at the University of Colorado Denver’s Anschutz Medical Center



Use biomedical and behavioral 
research grand challenges to 
generate flagship data sets 
Emphasize ethical best practices
Prepare AI/ML-friendly data
Promote diverse teams

Standardize Data 
Attributes

Develop 
Automated Tools

Create cross-
training materials 

for Workforce 
Development

Disseminate 
Products & Best 

Practices

New 
Datasets

Bridge2AI

https://commonfund.nih.gov/bridge2ai

https://commonfund.nih.gov/bridge2ai


commonfund.nih.gov/bridge2ai 25

Instilling a culture of ethical inquiry

To integrate all types of ethically sourced 
biomedical and behavioral data
to predict health outcomes

From: Big data hurdles in precision medicine and precision public health, Prosperi et al. BMC 
Medical Informatics and Decision Making (2018)

Topol , E.J. High-performance medicine: the convergence of human and arti ficial intelligence. 
Nat Med 25, 44–56 (2019). https ://doi.org/10.1038/s41591-018-0300-7

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-018-0719-2


commonfund.nih.gov/bridge2ai 26

Preparing the Data

Data 
Preparation

Model 
Development

Model 
Evaluation

Teaming Ethics

StandardsTools

Data 
Acquisition

Skills & 
Workforce 

Development

 Data 
Generation 
Projects (OT2)

 BRIDGE Center 
(U54)

$96M over 4 years
5-8 awards

$8M over 4 years
1 award
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BRIDGE Center

Best Practices for AI/ML in Biomedical and Behavioral Research

Evaluate

Disseminate

Integrate

Activities
Knowledge
Practices

Products from Data 
Generation 

Projects
Skills & Workforce 

Development 
Materials

Bridge2AI Program
Use external 
stakeholders



“Achieving the effective convergence of biomedical data and machine learning 
requires datasets to be thoughtfully designed from the outset to be valuable for 

machine learning-based analysis.” –NIH ACD Working Group Report

28

FAIR and AI/ML-Ready Data

What does it mean for data to be AI/ML ready?
• “AI/ML readiness” is not simply formulaic.  It requires engagement and feedback from 

AI/ML applications:
• Formats are dictated by the AI/ML workflow tools
• Biomedical applications often require data from multiple sources to be interoperable 
• Other aspects (e.g. representation of information, presence of noise, specificity or uncertainty of labels, 

and the amount of data) can impact computational and model performance
• Documentation is also key

• AI/ML-readiness should be guided by a concern for human and clinical impact 
• Requires attention to ethical, legal, and social implications of AI/ML

https://www.acd.od.nih.gov/documents/presentations/12132019AI_FinalReport.pdf


Collaborations to Make Data FAIR and AI/ML Ready

Support Collaborations to 
Improve the AI/ML-Readiness 
of NIH-Supported Data 

Artificial intelligence and machine learning 
(AI/ML) are a collection of data-driven 
technologies with the potential to 
significantly advance biomedical research.

FY21: NOT-OD-21-094 FY22:  NOT-OD-22-067

NIH makes a wealth of biomedical data available and reusable to fuel scientific discovery. 
However, further investment, innovation is needed to ready these data for use for cutting edge 
AI/ML applications.
To accelerate their development, ODSS supported collaborations that brought together 
expertise in biomedicine, data management, and AI/ML to make NIH-supported data AI-ready 
for AI/ML analytics.

https://datascience.nih.gov/artificial-intelligence/initiatives/Improving-AI-readiness-of-Existing-Data

https://grants.nih.gov/grants/guide/notice-files/NOT-OD-22-067.html
https://datascience.nih.gov/artificial-intelligence/initiatives/Improving-AI-readiness-of-Existing-Data


Training the Workforce to Make Data FAIR and AI/ML-Ready

FY21: NOT-OD-21-079

https://datascience.nih.gov/artificial-intelligence/initiatives/Workforce-Gap-Data-Governance-AI

ODSS supported the development 
and implementation of curricular or 
training activities at the interface of 
information science, AI/ML, and 
biomedical sciences to develop 
the competencies and skills 
needed to make biomedical 
data FAIR and AI/ML-ready.

https://datascience.nih.gov/artificial-intelligence/initiatives/Workforce-Gap-Data-Governance-AI


Collaborations to Advance Ethical Use of AI/ML

Advancing the Ethical 
Development and Use of AI/ML 
in Biomedical and Behavioral 
Sciences

ODSS will support collaborations that bring 
together expertise in ethics, biomedicine, data 
collection, and AI/ML to advance the 
understanding, tools, metrics, and practices for 
the ethical development and use of AI/ML in 
biomedical and behavioral sciences.

New in FY22:  NOT-OD-22-065

These collaborations are intended to generate new understanding, practices, tools, techniques, 
metrics, or resources that will aid others in making ethical decisions throughout the development 
and use of AI/ML, including the collection and generation of data as well as the reuse of data and 
models by others. Research products developed under this NOSI will be shared and made broadly 
reusable.

https://datascience.nih.gov/artificial-intelligence/initiatives/ethics-bias-and-transparency-for-people-and-
machines

https://grants.nih.gov/grants/guide/notice-files/NOT-OD-22-065.html
https://datascience.nih.gov/artificial-intelligence/initiatives/ethics-bias-and-transparency-for-people-and-machines


The NIH is interested in bringing together a diverse cross-section of scientists, 
social scientists, ethicists, advocates, legal scholars, communicators, and 

artists interested in the social implications of technology to

o Forge new collaborations among these cross-disciplinary groups

o Identify important areas of consideration at the intersection of 
artificial intelligence (AI) and machine learning (ML), biomedicine, and 
ethics.

o Generate creative strategies to solve ethical dilemmas in biomedical 
AI/ML



Micro Lab #1
Dec 15th, 2021, 2-4pm ET

Who are the 
relevant 

stakeholders? 

Jan 12th, 2022, 2-4pm ET

What are the key 
opportunities, 

challenges, and 
themes?

Micro Lab #2
Jan 26th, 2022, 2-4pm ET

Organizing and 
understanding 

opportunity

Micro Lab #3



Developing social and technical approaches 
to defining and implementing ethics 

across the AI data ecosystem

March 14-18, 2022 from 10:00 AM ET - 5 PM ET.
https://apply.hub.ki/aiandethicsinnovationlab/

https://apply.hub.ki/aiandethicsinnovationlab/


Thank you

https://datascience.nih.gov/nih-
strategic-plan-data-science

https://datascience.nih.gov/nih-strategic-plan-data-science


AI in Nuclear Medicine 
Opportunities, Challenges , and NIBIB Funding

SNMMI AI Summit 2022

Behrouz N. Shabestari, Ph.D.
Director, NIBIB National Technology Centers 

Acting Director, Division of Health Informatics Technologies – NIBIB

behrouz.shabestari@nih.gov

www.nibib.nih.gov

mailto:behrouz.shabestari@nih.gov
http://www.nibib.nih.gov/


Arabi et al, The promise of artificial intelligence and deep learning in PET and SPECT imaging. Physica Medica. 2021

AI in
Nuclear 

Medicine

INSTRUMENTATION

QUANTITATIVE IMAGING IMAGE ACQUISITION & ARTIFACT CORRECTION

IMAGE RECONSTRUCTION

ATTENUATION & SCATTER CORRECTION

• Image domain correction
• Sinogram domain correction
• Sinogram to image mapping
• Hybrid Reconstruction

• Interaction position estimation
• Timing resolution improvement
• Energy resolution improvement
• Depth of interaction estimation

• Direct uncorrected to attenuation corrected
• Uncorrected to synthetic CT
• MRI to tissue labelling
• MRI to synthetic CT

• Low-dose image denoising
• Fast scanning
• Sparse data handling
• Motion correction
• Truncation compensation
• Metal artifact reduction

• Automatic VOI delineation and ROI 
segmentation for tumor Localization

• Internal dosimetry
• Diagnostic and prognostic modelling
• Decision support systems
• Automatic report generation



CURRENT WORK ON INSTRUMENTATION

Sanaat et al. Depth of Interaction Estimation in a Preclinical PET Scanner Equipped with 
Monolithic Crystals Coupled to SiPMs Using a Deep Neural Network. Applied Sciences. 2020 

Position of Interaction
• Multilayer perceptron positioning (MLP): Feedforward Artificial Neural 

Network (ANN) used for classification problems
• Modelling the positron range allows for accurate correction
• Spatial resolution is significantly improved

Positron Range Correction

Herraiz et al. Deep-Learning Based Positron Range 
Correction of PET Images. Appl. Sci. 2021

Time of flight estimation

• CNN vs Leading Edge 

20% improvement

(231 ps vs. 185 ps)

• CNN vs Constant Fraction 

Discriminator (CFD) 

23% improvement

(242 ps vs. 185 ps)

Berg E, Cherry SR. Using convolutional neural networks to estimate time-of-flight from PET detector waveforms. Phys Med Biol. 2018



Automatic GTV delineation modeling observer variability

• Gross Tumor Volume (GTV) delineation is a bottleneck in 
radiation therapy

• Goal: Automatically delineate GTV contours modeling 
observer variability

• Challenges
• Large amount of data annotations to collect:

(4 readers, 3 trials per image, 68 patients)
• Model variability in deep learning network

• Opportunities
• Predict GTV contour with confidence level
• Significantly accelerate contouring process
• Training opportunities for junior radiologists

• Deep Learning Approach
• Learn discrete confidence maps
• Use modified U-Net structure

• Predicted GTV compared to confidence maps from human 
observers. Dice score comparable to inter-reader variability.

Observer contours

Observer contours Confidence maps

Comparison Dice score

Predicted vs. human GTV confidence maps 86.8% (+/- 5.4%)

Inter-observer variability (human) 90.5% (+/- 4.3%)

CTV (from observer vs. predicted GTV) 89.5% (+/- 1.8%)

El Fakhri, P41EB022544 (CMITT), R01CA165221



Kim, Li, El Fakhri,  P41EB022544

Utility of other domains

Various domains of medical applications

- Multi-modality: PET / MR / CT

- Multi-tracer PET: FDG, MK6240, FMISO, F-DOPA, …

- Multi-sequence MR: T1, T2, ASL, MWI, DTI, …

- Images with different scanners / multi-sites

How can we utilize other domains?



Domain Adaptation/Few Shot Learning

• What is domain? (e.g. brain PET, MR, CT)

• DA has a benefit when

target domain has a small dataset

Common feature space

Few shot learning

★☆☆☆☆

★★★★☆

★★★★☆

Resolution

Functional

Quantification

★★★☆☆

★★★☆☆

★☆☆☆☆

★★★★☆

★☆☆☆☆

★★★☆☆

Different characteristics for the same brain

Kim, Li, El Fakhri.  P41EB022544



DA for multi-tracer PET image

▪ Source domain: FDG-PET – sufficient public/internal data

✓ Common features can be utilizable
✓ We assume new tracers may not have sufficient training samples

▪ Issues of conventional DA

✓ Limitation of data sharing across multi-sites
✓ Inefficient to use large datasets of the source domain
✓ Requires resources & longer training time

▪ Goal 1: DA-FSL PET image denoising

✓ Apply our model to new tracers with insufficient data

▪ Goal 2: Domain adaptation without source data

✓ Only trained model in source domain is used



Deep learning-based PET AC for amyloid and tau imaging
SUVR error of tau imaging (18F-MK-6240)SUVR error of amyloid imaging (11C-PiB)

• The proposed attenuation correction (AC) method by utilizing novel 
MR-sequence and network-structure designs has the smallest error in 
amyloid and tau deposition-related regions.

Gong et al, Eur. J. Nucl. Med. Mol. Imaging 2021.       P41EB022544



Deep learning-based PET AC for amyloid and tau imaging

Gong et al, Eur. J. Nucl. Med. Mol. Imaging 2021.       P41EB022544

• The averaged surface maps of SUVR relative error for different methods.

The color map range is from 1% to 10% in magnitude.



Deep learning-based PET image reconstruction

Gong et al, IEEE Trans Med Imaging 2019

Stop

?

3D U-net

𝒇(𝒛|𝜽)

Update network

parameters 𝜽𝑛+1

𝒇(𝒛|𝜽𝑛)
Network input:𝒛 Loss function:

MSE

No

Yes

Trained 3D U-net 

𝑓(𝒛|෡𝜽)

Low-quality image 

Training Labels:

High-quality image 

Training:

Stop

?

Yes

No

Trained 3D U-net Loss function:

𝐿 𝒚 𝑓(𝒛|෡𝜽)

Final Output：𝑓(ො𝒛|෡𝜽)

𝒇(𝒛|෡𝜽)

Update network

input 𝒛𝑛+1

𝒇(𝒛|෡𝜽)
PET sinogram : 𝒚

Testing:
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Regularized PET reconstruction using DNN

• Representing the unknown PET image as an output of a pre-trained deep 

neural network and perform a constrained maximum likelihood estimate:

• Both inter-patient information and intra-patient information can be included 

into the reconstruction by pre-training a DNN using high-quality PET images.

[1] K Gong, J Guan, K Kim, X Zhang, J Yang, Y Seo, G El Fakhri, J Qi, Q Li. Iterative PET image reconstruction using convolutional neural network representation. 
IEEE TMI, 2018
[2] Z Xie, X Zhang, T Li, W Qi, E Asma, J Qi. Generative adversarial network based regularized image reconstruction for PET. Phys Med Biol. 2020
[3] Z Xie et al,  Anatomically aided PET image reconstruction with deep neural network. Medical Physics, 2021.

https://qilab.bme.ucdavis.edu/
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Cascaded a 3D CNN denoising module

TOF recon 
without SC

μmap

Scatter corrected
images

Cascaded

Denoising
module/network (f2)

Final output
(Scatter corrected and 

denoised) images

1st module

2nd module

https://qilab.bme.ucdavis.edu/


www.nibib.nih.gov

Main Challenges 

• Lack of a very large amount and volume of high-quality (clinical) training data-images.
o clinical 3D data are typically very large (as compared to reconstructed images), and are not 

always stored on the clinical systems
*** Potential solution: using simulated data based on physical imaging models to pre-train

network and fine tune using real data 
• Need harmonized data and images

*** Potential solutions: artificial and virtual data for training – use of phantom data!
• Need of a large number of data-image pairs for proper training of deep networks (with huge amount 

of connections/parameters) 
*** Potential solutions: data augmentation and transfer learning techniques

• Training and generalizing the networks across sites - difficulties to exchange data
o proprietary data formats by different manufacturers 

*** Potential solutions: federated approaches – training of identical networks  at different
centers and sharing only the trained network parameters 

http://www.nibib.nih.gov/


www.nibib.nih.gov

Opportunities

• Ability to work with a very low count data to provide diagnostic quality images 
• Ability to work with imperfect and contaminated data
• Ultra fast, near real-time, reconstructions directly from data (especially important for motion and 

dynamic studies with many time frames, interventional procedures, etc.)
• In quantitative imaging, deep learning-based methods provide faster alternatives with high accuracy 

and can also perform attenuation correction simultaneously
• Deep neural networks provide new ways to design the regularization function
• Promise in development of novel PET tracers and cardiac-specific postprocessing techniques using 

artificial intelligence
• Significant opportunities to reduce noise and improve reconstruction 

http://www.nibib.nih.gov/


www.nibib.nih.gov

Funding Opportunities at NIBIB

http://www.nibib.nih.gov/


NIBIB Notice of Intent to Publish a Funding Opportunity Announcement
• Participating ICs:  NIBIB, NIA, NEI, NCI
• Posted Date: March 08, 2022
• Application Due Date: May 26, 2022

• Purpose: The use of engineering principles to drive development, speed the adaptation, and 
establish tools and technologies as robust, well-characterized solutions that fulfill an unmet need 
and to encourage applications to:

1. establish a robust engineering solution to a problem in biomedical research or the practice of medicine; 
2. develop a strategic alliance of multi-disciplinary partners based on a well-defined leadership plan; and 
3. realize a specific endpoint within 5-10 years with a detailed plan, timeline and quantitative milestones.

• A Key Requirement:  BPI applications must include at least 1 academic and 1 industrial organization.
• The areas of research:  must be consistent with the missions of the IC’s participating in the BPI

www.nibib.nih.gov

Bioengineering Partnership with Industry (BPI) (U01)

PAR-22-123

http://www.nibib.nih.gov/
https://grants.nih.gov/grants/guide/pa-files/PAR-22-123.html


• U01 (cooperative agreement) mechanism

• Clinical applications optional, but encouraged

• Milestones and deliverables / interim reports

• Duration of 5 years

• One competitive renewal  

• Budget – applications requesting ≥$500k/year require IC approval

• Require an Industrial Partnership

Bioengineering Partnership with Industry (BPI) (U01)

www.nibib.nih.gov

PAR-22-123

http://www.nibib.nih.gov/
https://grants.nih.gov/grants/guide/pa-files/PAR-22-123.html
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NCBIB

TR&D

Training and Dissemination
----------------------------------------

• Committed to training practitioners
• Aggressive dissemination 

• research papers, reviews
• patents  
• presentations, workshops
• website(s), newsletters
• public outreach

National Centers for Biomedical Imaging  and Bioengineering (NCBIB) - P41

Seamless Oversight
----------------------------------------

• Senior scientist as PI
• experienced TR&D Leaders
• External Advisory Board
• Institutional Support

▪ Strong foundation of Technology Research & Development (TR&D) Projects
− technology development, not mechanistic research; within NIBIB mission

− national/international impact -- uniqueness

– innovative, cutting-edge, responsive to current challenges in the field

– complex, multidisciplinary – synergy among TR&Ds

– high-risk test beds leading to practical tools

▪ Driven by needs of the field through robust Collaborative Projects (CP)
− dynamic, iterative push-pull relationships

▪ Deploying results via Service Projects (SP)
− geographically diverse

− technology push (using tools not available elsewhere)      -- exploit more mature capabilities of the Center



P41 Centers: Center for Virtual Imaging Trials

www.nibib.nih.gov

A national center to develop and provide a virtual platform to assess the 
clinical performance of medical imaging systems from design to use

virtual population virtual acquisition virtual interpretation

vi
rt

u
al

 t
ri

al

CP1

CP2

CP3

SP9

SP8

CP4
CP5

SP6

CP6

TRD Projects

Collaborative Projects

Service Projects

SP7

SP1

SP2

SP3

SP4
SP5

CP7

CP8

TRD1
Human 
Models

TRD3
Analysis 
Models

TRD2
Scanner 
Models

Training and Dissemination

AdministrationServing a broad coalition of 
Academia: Stanford, Yale, Harvard, … 
Industry: GE, Siemens, HeartFlow,
Government: NIH, NASA, …

A platform for new science
A new method to test and optimize practice

https://deckard.duhs.duke.edu/cvit/

a new experimental paradigm in medicine

Ground truth

Siemens Flash, 120 kV, pitch 

of 1, "body" filter

Simulated CT image 

SAMEI, EHSAN, Duke University, 5 P41 EB028744-02

http://www.nibib.nih.gov/


1. Virtual CXR formation 
from simulated patients 
with COVID-19 progression

2. Generation of 
images for diverse 
imaging conditions

Controlled

Progressed

Primary
Feature Extractor

Max

R
e

gr
es

so
r

4. AI Progression Classifier 
assessing change across 
multiple scans

Harmonized

3. AI Harmonizer standardizing 
diverse images to enable 
longitudinal comparison

Virtual Clinical Trial Can Enable Assessment and Management of COVID PASC



• R01 (Clinical Trial Not Allowed)

• New R01 FOA (PAR-21-038) Release Date: November 9, 2020
• Standard Submission Dates
Google: “NIH Katz award”

• Specifically for Early-Stage Investigators
• Up to 5-years may be requested
• Must not include preliminary data

• Encourages: 
• An innovative project that represents a change in research direction
• Applications must include a separate attachment describing the 

change in research direction.
• Early-stage developmental ideas that promise transformation 
• High-risk/High-reward projects

Stephen I. Katz Early-Stage Investigator Research Project Grant

Stephen I Katz, M.D., Ph.D.
Director NIAMS 1995-2018

www.nibib.nih.gov

http://www.nibib.nih.gov/
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▪ “Integration of Imaging and Fluid-Based Tumor Monitoring in Cancer Therapy” PAR-21-290 (R01)

▪ “Molecular Imaging of Inflammation in Cancer” PAR-21-294 (R01)

▪ Notice of Special Interest (NOSI): Translation of Quantitative Imaging tools and Methods for the Academic 
Industrial Partnership (AIP) NOT-CA-21-032

▪ Notice of Special Interest (NOSI): Advancing the development of tumor site-activated small molecules           
NOT-CA-21-101

▪ Notice of Special Interest (NOSI): Research on Interprofessional Teamwork and Coordination During Cancer 
Diagnosis and Treatment; NOT-CA-22-014

▪ Notice of Special Interest (NOSI): Validation of Digital Health and Artificial Intelligence Tools for Improved 
Assessment in Epidemiological, Clinical, and Intervention Research NOT-CA-22-037

Selected Funding opportunities related to advanced imaging AI at NCI 

https://grants.nih.gov/grants/guide/pa-files/PAR-21-290.html
https://grants.nih.gov/grants/guide/pa-files/PAR-21-294.html
https://grants.nih.gov/grants/guide/notice-files/NOT-CA-21-032.html
https://grants.nih.gov/grants/guide/notice-files/NOT-CA-21-101.html
https://grants.nih.gov/grants/guide/notice-files/NOT-CA-22-014.html
https://grants.nih.gov/grants/guide/notice-files/NOT-CA-22-037.html


Evaluating AI algorithms for nuclear medicine: 
Ongoing efforts and the road ahead

Abhinav K. Jha, PhD
Department of Biomedical Engineering

Mallinckrodt Institute of Radiology
SNMMI AI Taskforce Evaluation Team lead 

SNMMI AI Summit 2022



• Challenges in evaluation of AI algorithms

• Efforts of the SNMMI AI taskforce evaluation team

• Other ongoing efforts towards evaluating AI algorithms for nuclear 

medicine

• Road ahead: Some important needs 

• A wishlist ☺

Outline 



• AI algorithms are showing significant promise in multiple aspects of 

nuclear medicine

• For clinical translation of AI algorithms, rigorous evaluation is 

imperative

• AI algorithms learn rules from analysis of training data. Thus:

• Their performance depends heavily on the training data

• Output often not interpretable and can be unpredictable 

• This leads to several challenges that the evaluation strategy should be 

able to address 

Introduction 



Challenge: Task-agnostic evaluation may not 
reflect performance on clinical tasks

Evaluation using task-agnostic metrics (root mean square error for 
reconstruction/denoising and Dice scores for segmentation) may not 

correlate with performance on clinical tasks*

Evaluation should assess performance on clinical tasks
*Yu et al, J. Nuc. Med. 2019
*Yang et al, Rad. AI, 2020

Image “looks” less 
noisy, but defect 

washed out*

Noisy cardiac SPECT 
image from patient 

with perfusion defect AI-based denoising algorithm



Challenge: Generalizability

Trained at this center and 
worked great!

Oops!

Zech et al, PLOS Med, 2018
Gianfranceso et al, JAMA Intern Med. 2018
Noor et al, BMJ 2020  

Evaluation should characterize the generalizability of AI methods



Challenge: Data drift

Evaluation should assess if the method is performing reliably in a post-
deployment setting



A major ongoing effort: SNMMI AI Taskforce 
Evaluation Team

Team consisting of nuclear medicine physicists, computational imaging 
scientists, physicians, statisticians, representatives from the industry and from 

regulatory agencies



A key recommendation from the taskforce: 
The claim

An evaluation study for an AI algorithm should produce an accompanying claim 
consisting of the following components



The claim will inherently quantify the 
generalizability of the AI algorithm



The task force proposes an evaluation 
framework

This framework will guide AI developers conduct the evaluation study that 
provides evidence to support their intended claim

Clinically effective post 
deployment

Efficacy in making clinical 
decisions

Efficacy on task-specific 
technical aspects 

Method shows 
promise.

Method works robustly with 
populations.  

Method-derived MTV values can 
prognosticate patient response

Method yields accurate and 
precise MTV values

AI-based segmentation 
method evaluated with 

Dice scores 
Proof of concept 

evaluation

Technical evaluation

Post-

deployment

Clinical 

evaluation



Elements of study design for each class of evaluation

The taskforce is providing the RELAINCE (Recommendations for Evaluation 
of AI in Nuclear Medicine) guidelines for each element of study design



The RELAINCE guidelines

*Jha et al, AI in Nuclear Medicine: Best practices for Evaluation, J. Nuc. Med., accepted with minor revisions

• Provide best practices for evaluation in each element of study design 

• Proposed for each class of evaluation

• More details in forthcoming paper*



A recent effort towards implementing some of 
the RELAINCE guidelines*

Paper provides the tools to implement some 
of RELAINCE guidelines in context of PET

*Jha et al, PET Clinics, 2021



Other ongoing efforts
• Evaluation team, AI-dosimetry taskforce: Goal is to develop guidelines for 

task-based evaluation of AI methods for image-based dosimetry

• Nuclear-medicine data standardization initiative

Evaluation of AI-based transmission-less 
attenuation compensation method for 
cardiac SPECT on defect-detection task 

using a virtual clinical trial 
(Yu et al, SPIE Proc. 2021) 

Evaluation of an AI-based PET segmentation method 
for oncological PET on quantification task using 

ACRIN 6668 multi-center clinical trial data 
(Liu et al, Phys. Med. Biol. 2021, highlighted on NIBIB 

website)



The road ahead: Vision



The road ahead: Some important needs

New methods for objective task-based evaluation Methods to compute uncertainty of AI for 
clinical decision making

Develop evaluation strategies to adapt to the changing 
AI landscape

Inter-disciplinary 
collaborations and 
community-wide 
efforts for multi-
center evaluations

Modeling 
acquisition with 

system-simulation 
tools

Virtual 
interpretation with 

numerical 
observers

Virtual population 
using 

anthropomorphic 
phantoms

Methods to extract 
task-specific 
information

Modeling 
acquisition with 

system-simulation 
tools

Virtual 
interpretation with 

numerical 
observers

Virtual population 
using 

anthropomorphic 
phantoms Simulation 

tools

Input: 

PET Image
Output: 

Segmentation

Proof of concept evaluation
Is this segmentation 

accurate?

Methods to
evaluating with 

clinical data

AI-based 
segmentation 

method

Tumor volume 
estimated with 
X% uncertainty

Oncologist making 
treatment decision

Patient imaged on 
PET scanner

Patient risk-value 
profile

An 
informed 
decision



Wishlist of a computational nuclear-medicine (NM) 
imaging scientist interested in evaluation of Al 
algorithms

Support to develop 
technologies for evaluating 

AI for NM (virtual clinical 
trials, clinical and post-
deployment evaluation)  

Access to list-
mode data in a 
standardized 

format

Multi-disciplinary, 
multi-institutional 

collaborative 
opportunities

Support to develop 
methods for ethical 

evaluation of AI 
algorithms

Large, representative, 
diverse, high quality 

multi-center databases 
that model data and 

concept drifts. 
A MIDRC for NM

Platforms for 
dissemination of 

evaluation 
technologies



Wishlist of a computational nuclear-medicine (NM) 
imaging scientist interested in evaluation of Al 
algorithms

Support to develop 
technologies for evaluating 
AI for NM (virtual clinical 
trials, clinical and post-
deployment evaluation)  

Access to list-
mode data in a 
standardized 

format

Multi-disciplinary, 
multi-institutional 

collaborative 
opportunities

Support to develop 
methods for ethical 

evaluation of AI 
algorithms

Large, representative, 
diverse, high quality 

multi-center databases 
that model data and 

concept drifts. 
A MIDRC for NM

Platforms for 
dissemination of 

evaluation 
technologies



Summary
• AI in nuclear medicine presents immense and exciting 

opportunities 

• Rigorous evaluation is imperative for clinical translation of these 
opportunities 

• Multiple ongoing efforts towards improving the evaluation of AI 
algorithms for nuclear medicine

• The road ahead provides a path to use AI for transforming 
nuclear medicine

• Exciting time to be in nuclear medicine!
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• Attendees of SPIE Image Perception, Observer Performance, and Technology 
Assessment conference

• NIH NIBIB R01 EB031051, R56EB028287, R21 EB024647 (Trailblazer award) 



Backup slides



Class 1: Proof-of-concept evaluation

Objective: Demonstrate technical innovations of new methods

Example claim: An AI-based PET segmentation method evaluated on patients with locally advanced lung 
cancer acquired on a single scanner with single-reader evaluation yielded mean dice scores of X (95% 
confidence intervals)

Input: 

PET Image
Output: 

Segmentation

Proof of concept evaluation
Is this segmentation 

accurate?



Class 2: Technical evaluation

Objective: Quantify technical factors such as accuracy, reproducibility 
and repeatability of the method on the specific clinical task

Input: 

PET Image

Output: 

Segmentation

Metabolic tumor 
volume (MTV)

Technical evaluation
Is this MTV accurate, 

repeatable, 
reproducible?

Example claim: An AI-based PET segmentation method yielded MTV values with a normalized bias of X% 
(95% confidence intervals) as evaluated using an anthropomorphic thoracic physical phantom conducted 
on a single scanner in a single center



Class 3: Clinical evaluation
Objective: Quantify efficacy of the method for making clinical 
decisions

Example claim: Early change in MTV measured from FDG-PET images with an AI-based segmentation 
method yielded an increase in AUC from X to Y, with a change Δ (95% CIs of Δ) in predicting overall survival 
in patients with locally advanced lung cancer, as evaluated using a prospective observational study



Class 4: Post-deployment evaluation

Objectives
• Monitoring, detecting 

technical issues, potential 
bugs, reportable events, 
opportunities for 
improvement

• Evaluating off-label use

• Provide feedback for 
development



AI in Nuclear Medicine –An Academic’s 

Perspective

Joyita Dutta, Ph.D.
Associate Professor

Biomedical Imaging and Data Science Lab (BIDSLab), Department of Electrical and Computer   

Engineering, University of Massachusetts Lowell

Gordon Center for Medical Imaging, Massachusetts General Hospital | Harvard Medical School



• Estimation/Regression 

• Detection/Classification

Common Inverse Problems in Medical Imaging

Segmentation

vs.

Normal control Alzheimer’s patient

Disease StagingLesion Detection

Reconstruction SynthesisDenoising Deblurring



Differing Perspectives

Source: https://figshare.com/articles/figure/AI_in_PET_image_reconstruction_v1_0/14685915

https://figshare.com/articles/figure/AI_in_PET_image_reconstruction_v1_0/14685915


Reconstruction

• End-to-end reconstruction models: 

AUTOMAP, DeepPET etc. 

• Physics-informed AI models: AI-based 

penalties/priors, unrolled networks, etc.

Denoising/Deblurring

• Supervised low-count to high-count 

mapping models

• Supervised low-resolution to high-

resolution mapping models

• Unsupervised/self-supervised denoising 

and deblurring models

AI in Image Reconstruction, Denoising, and Deblurring



Active Areas of Research

• New architectures, loss functions, evaluation metrics

• Adapting models to work for different resolution and noise levels and across 

scanners/site/cohorts

• Unsupervised alternatives: Masking techniques, DIP, Noise2Noise, etc.

Training Phase Validation Phase

� = � ( � , � )

�

Loss function

� = � ( � , � )

� ��

Goal: To assess the trained model

��

Goal: To compute model parameters

Evaluation Metric

Iteratively 

update �



Breakthroughs

• Harnessing cross-modality information 

• Harnessing cross-tracer information 

• New data acquisition paradigms with reduced duration or dose

• Speed*



• Privacy 

• Informed consent

• Data ownership

• Questions: 

• Who should control and profit from deidentified clinical data? 

• Can secondary use of clinical data be treated as a form of public good to be used for the benefit of 

future patients and not to be sold for profit or under exclusive arrangements?

Challenge 1:  Data Sharing

Image source:  Willemink et al., Radiology, 2020; 295:675–682 



Toward Federated Learning

Image source:  Kaissis et al., Nature Machine Intelligence, 2020; 2:305–311  



• Need to ensure data volume, variety, and veracity 

• Need for reproducibility

• Need for generalizability

• Bias control

• Transparency

• Explainability

Challenge II:  Trustworthiness

Image source:  Jones et al., PET Clinics, 2022; 17:P1–12 



Challenge III:  Standardization

• Need for universal benchmarking standards in nuclear medicine

• De-identified datasets

• Agreed upon evaluation metrics

• Independent secondary validation requirements



Emerging Areas and Future Directions

• Unsupervised, weakly-supervised, and self-supervised learning models and network 

architectures 

• Transfer learning paradigms

• Federated learning protocols

• Interpretable machine learning models



Tyler Bradshaw, PhD, DABSNM
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Department of Radiology

University of Wisconsin
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Pitfalls in Developing Artificial Intelligence 

Algorithms in Nuclear Medicine
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The promise of AI in nuclear medicine

Bradshaw et al, JNM 2021



The problem with AI

Numerous models have shown promise

Few models are ultimately useful

AI ChasmPublications on AI in NM

https://techcrunch.com/2017/01/05/crossing-the-ai-chasm/

Bradshaw et al, JNM 2021



Why do many models not work?

1. Poor reproducibility

2. Poor replicability

3. Poor generalizability

I run your codes on your data and do not come to 

the same conclusion

I run the same methods on similar data and do not 

come to the same conclusion

I run your model on a different population and do 

not come to the same conclusion 

? Definitions are 

inconsistent



Reproducibility

It is a serious problem in many fields

Baker M, Nature; 533:452, 2016

Same code, same data



It’s actively being addressed in CS

Reproducibility

It is a serious problem in many fields

Baker M, Nature; 533:452, 2016

…what about in radiology???

Same code, same data



Replicability

Researcher tried to replicate 255 ML papers

– 64% replication success rate

Same methods, similar data



Generalizability

- Randomized controlled trial 

- Accuracy: expected 99%, got 87% 

Same model, new population

- 15x more FPs than a physician

- 3x higher error in patients with history of surgery

- 81% PPV vs 92% from previous studies

“Dataset shift” 



Why is this happening?

Publication 

biases Small 

sample 

sizes

Freedom of 

methods of 

analysis

Multiple 

hypothesis 

testing

Poor 

data/label 

quality



Why is this happening?

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-

methods-momentum-adagrad-rmsprop-adam-f898b102325c



Why is this happening?

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-

methods-momentum-adagrad-rmsprop-adam-f898b102325c



Why is this happening?



Why is this happening?



What can we do about it?



Final thoughts

Summary

▪ Poorly developed/validated algorithms can cause distrust and fear (users and patients)

▪ Overfitting + randomness makes deep learning susceptible to low reproducibility, replicability, and 

generalizability

▪ Guidelines are needed for best practices along all stages of development

Panel Questions

▪ How do we “raise the bar” for research quality without stifling innovation?

▪ How do we incentivize researchers to share data, codes, and models (i.e., a culture of sharing)?
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Translations of Artificial Intelligence-Based 
in Imaging Technologies

Chi Liu, PhD

Associate Professor

Radiology and Biomedical Imaging

Yale University



Questions to Panel 2 (Industry Representatives) 

• Where to implement?
• Scanner consoles

• Workstations

• Cloud

• PACS

• ... 

• What data are accessible on the platform?
• Images 

• Sinograms/Raw data

• Listmode

• Motion tracking signals?



SNMMI AI Taskforce Survey, 186 responses  



Implementing PET Denoising on Visage PACS System



Direct prediction of attenuation-correction SPECT w/ scatter and non-imaging information 

Chen, Xiongchao, et al. "CT-free attenuation correction for dedicated cardiac SPECT using a 3D dual squeeze-and-excitation residual dense network." 
Journal of Nuclear Cardiology (2021): 1-16.

➢ From 99mTc-tetrofosmin cardiac SPECTNAC MPI to SPECTAC , for dedicated cardiac SPECT scanners
Advanced algorithms, additional patient information incorporated 

The schematic of our proposed AC workflow.

Visualization of NAC and AC SPECT images and polar maps.



Questions to Panel 3: End users of AI (Physicians, 
technologists, hospital administrators)

• How much improvement in image quality can impact clinical practice?

• If AI introduces bias, how much is acceptable?

• If AI introduces artifact, how much is acceptable?



Comparing Denoising Methods

Nstd image

Mean image

Difference image

Gaussian Filter
FWHM = 5 mm

MAP Quadratic
Beta = 0.5

Anatomical NLM
Beta = 0.1Full Dose PET Low Dose PET

r-U-net Predicted
Full Dose PET

Wenzhuo Lu, et al. An investigation of quantitative accuracy for deep learning 
based denoising in oncological PET. 2019 Phy. Med. Bio. 64 165019 
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Comparison with Existing Denoising Methods

Wenzhuo Lu, et al. An investigation of quantitative accuracy for deep learning 
based denoising in oncological PET. 2019 Phy. Med. Bio. 64 165019 



S L I D E  10L. Shi, et al. EJNMMI, Vol. 47 Issue 10, p2383-2395, 2020

CT-less SPECT Attenuation Map Generation



Direct Prediction of Attenuation-Corrected Cardiac SPECT from Uncorrected SPECT

Yang, Jaewon, et al. "Direct attenuation correction using deep learning for cardiac SPECT: A feasibility study." Journal of Nuclear Medicine (2021).

➢ From 99mTc-tetrofosmin cardiac SPECTNAC MPI to SPECTAC , for dedicated cardiac SPECT scanners 

Schematic of U-Net-based AC workflow.

Good Correction Over Correction

2 in 100 cases



12

Comparison of Indirect and Direct Approaches for General Purpose SPECT

Chen, X.,et al. Direct and indirect 
strategies of deep-learning-based 
attenuation correction for general 
purpose and dedicated cardiac SPECT. 
Eur J Nucl Med Mol Imaging (Feb, 
2022).



Questions to Panel 4: (FDA, CMS, and NIH)

• How much training datasets are needed?

• How diverse the training datasets need to be?
• E.g. scanners, tracers, vendors

• How comprehensive the validations need to be?
• E.g. patient population, disease types



How many data are needed for training?

Chen, X.,et al. Direct and indirect strategies of deep-learning-based attenuation correction for 
general purpose and dedicated cardiac SPECT. Eur J Nucl Med Mol Imaging (2022).



Full Scan 3min 1min

GE DMI 4 
Ring Dataset
(U. of Iowa)

3min 1min

Trained by 
GE DMI data

Trained by Siemens mCT
10%-count data

3min 1min

Trained by Siemens mCT
40%-count data

3min 1min 3min 1min

Pre-trained by Siemens mCT 10% count 
data, fine-tuned by GE DMI data



Thoughts

• More upfront information related to translation can help data 
scientists develop more translatable AI technologies

• Have such information and considerations in the early phase of 
technology development
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Too Much, Too Soon?
Reflections on EXINI’s Path from Past to Present

Karl Sjöstrand

EXINI Diagnostics
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About EXINI

• Business: Objective and standardized 

assessments from medical images for accurate 

staging, prognosis and treatment selection

• Incorporated in 1999: 23 years of experience in 

imaging biomarker software for nuclear medicine

• Based in Lund, Sweden

• EXINI Diagnostics AB is a wholly owned subsidiary 

of Lantheus Holdings.

2
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Timeline of Company Momentum

1999 2022

Early adopters

Circle of trust

2011



©2021 Lantheus Holdings, Inc. All rights reserved

Timing is Everything

• Early 2000s

– Cloud & browser based

– Black box AI

1. De-identify images

2. Send to cloud servers

3. Cloud AI processing

4. Receive results (diagnosis)

5. Re-identify & report



©2021 Lantheus Holdings, Inc. All rights reserved

Course Correction

• Stand-alone applications

• Strong focus on clinical questions and unmet needs

• “Proximity effect” limited sales, inefficient sales process, small markets
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Timeline of Company Momentum

1999 2022

Peer reviewed publications

Prospective validation

KOL’s

2011

Early adopters

Circle of trust
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aBSI

aBSI as a predictor of response to prostate 

radiotherapy in men with newly diagnosed 

metastatic prostate cancer. (Ali, A. et al. European 

Urol. 2019)

Automated Bone Scan Index (aBSI) as an 

independent prognostic biomarker for overall 

survival. (Armstrong, A. et al. JAMA Oncology 2018)

aBSI as primary endpoint to evaluate efficacy

of TAS-115 as treatment for castration resistant 

prostate cancer with bone metastasis. 

(Matsubara, N. et al. Clinc. GU Cancer)
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Timeline of Company Momentum

1999 2022

Dedicated sales 

force

Clinical 

Guidelines

2011

Peer reviewed publications

Prospective validation

KOL’sEarly adopters

Circle of trust
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PYLARIFY AI
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Status Challenges

• Security audit is not standardized

• Deep integration with existing clinical 
workflow is essential
– But it is different in every site

– No user interface standard

• Open standards such as DICOM and HL7 
are great - but conformance is highly 
variable

• Cloud deployments are straight forward 
and safe – but largely not accepted

• Local installations are time consuming to 
set up, difficult to set up, monitor and 
maintain

Currently rolling out to PYLARIFY PSMA 

customers in US and EU

• Enabling reproducible, standardized and 

quantitative reporting in PSMA PET/CT



MIM Software

AI in Nuclear Medicine
Prepare Like You’re Training for a Triathlon

Tim Adams, MIM Software
Nuclear Medicine Market Director



A Challenge with 3 Phases

Design Analyze Implement

PHASE 1 PHASE 2 PHASE 3



Phase 1: DESIGN

CLINICIANS

● Time for data creation

● Secure tools to share 
data

● Report anonymization

INDUSTRY

● Data access

● Clean, multi-
institutional datasets 
(unbiased)

● Data agreements

Challenges



SHARED

● “Neutral Ground” data 
repositories

● Increased access to trial data

● Community registries

● Data sharing education

Needs
Phase 1: DESIGN



CLINICIANS

● Unclear acceptance 
criteria

● Testing AI is disruptive 
to workflow

● Experience gaps

INDUSTRY

● Unclear regulatory 
landscape

● Validation requires 
clinical support

● Performance metrics 
are unclear

● Challenging to evaluate 
the Human-AI Team 
(Guideline 7)*

Challenges
Phase 2: ANALYZE

*https://www.fda.gov/media/153486/download



SHARED

● FDA/clinician performance 
standards

● Finalized regulatory 
guidelines

● Expert ground truth data

● Integrated AI testing 
ecosystems

● Workgroups to support AI 
validation

Needs
Phase 2: ANALYZE



CLINICIANS

● Lack of education resources about AI

● IT support and limitations of current hardware

● Small vs. large hospitals have different deployment 
issues

● Integrations into the clinical workflow

● Incentives and reimbursement

● Performance monitoring

Phase 3: IMPLEMENT

Challenges
INDUSTRY

“…a lack of education and 
training about AI could 
limit the technology from 
achieving its full potential.” 

- Samantha Santomartino, Dr. Paul Yi
University of Maryland

Yee Madden, Kate. “Both radiologists and medical students 

see the value of AI” AuntMinnie.com, https://bit.ly/3wfILS8. 

2 February 2022.

about:blank
https://bit.ly/3wfILS8


SHARED

● Education on AI as part of residency 
curriculum

● Non-disruptive quality checks

● Prioritization of IT resources

● Society support for cloud technologies

● Pathways and guidance to establish 
where AI could fit in fee structures

● Guidance from clinicians/FDA on 
performance monitoring

Phase 3: IMPLEMENT

Needs



INDUSTRY NEEDS:

● Data access is critical, but education and 
resources on how to support data 
initiatives are lacking. We need 
resources like the Data Science Institute 
website to inform, connect, and educate 
the community on AI

● Acceptance criterias and performance 
standards to streamline approvals

● FDA guidance around topics, including 
performance monitoring

Summary

● Strengthening relationships between 
clinicians and hospital IT

● Workgroups and consortiums around 
specific clinical problems

● Clarity regarding reimbursement for AI
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AI in Molecular Imaging
Sven Zuehlsdorff, Ph.D. 
Sr. Director, Research
Siemens Healthineers, Molecular Imaging

21 March 2022
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• Lung V/Q on lobe/segments level
• Lesion classification
• Disease staging support
• Differential diagnosis in neuro

• Segmentation: lesions, organs
• PERCIST, PROMISE, Deauville, …
• Neuro data base comparison
• Radiomics

AI in Molecular Imaging: Selected use cases

Sven Zuehlsdorff, Ph.D.| SHS DI MI PLM-R&D R

Innovate 
Modality
Business

1.

Expand
Diagnostic 
Offerings

2.

Lead
Clinical 
Decisions

3.

• Patient positioning
• Scan planning
• Device less Gating
• Low dose/fast scan
• Breath hold scan

• Data driven gating
• Kinetic Modeling 
• PACS ready image preparation
• Low count image reconstruction
• Denoising 
• PET/CT image registration

Patient WorkflowImage Formation Example

Diagnostic Tools Example
Clavicle 

Spine 

Neck level II 

Neck level V

AI to parcellate lung lobes/segments.
AI classifies normal vs. suspicious. 

Efficient Quantification

Therapy selection, monitoring
• Theranostics, dosimetry, monitoring
• Emerging therapies
• Auto Staging: Onco/neuro
• Risk stratification, phenotyping

New Frontiers
• Early diagnosis / screening
• Virtual biopsy
• Predictive disease modeling
• System biology/organ networks

Example

Combination of 
radiomics and genomics  
outperforms prognostic 
value of genetics and 
imaging markers alone.

The products/features (mentioned herein) are not commercially available in all countries and/or for all modalities. Future availability cannot be guaranteed.

Data driven 
gating to 
reduce 
impact of 
motion. 
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AI in Molecular Imaging: Opportunities and challenges (1/2)

Access to Data
• Access to data
• Quality
• Diversity 
• Patient privacy
• Cost of data

Sven Zuehlsdorff, Ph.D.| SHS DI MI PLM-R&D R

Algorithm 
• Technology
• Model/Learning
• Training 
• Testing
• Validation

Evaluation 
• Concept
• Technical
• Clinical 
• Real world
• Post market

Product
• R&D invest
• Deployment
• Market
• Maintenance 
• Viability 

Regulatory 
• Global market
• Local clearance
• Claims/Evidence
• Clinical Trials
• GMLP

Foundation Integrity Quality Access Safety
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AI in Molecular Imaging: Opportunities and challenges (2/2)

Sven Zuehlsdorff, Ph.D.| SHS DI MI PLM-R&D R

“About 100 years ago, electricity transformed every
major industry. AI has advanced to the point where
it has the power to transform every major sector in
the coming years.”
Dr. Andrew Ng, Stanford University (2017)

“There’s hype about artificial intelligence, but most
of the approaches suffer from poor data quality or
not enough data. If you want to use AI as an expert
system, to train people, to support people in their
decisions, you have to make sure that the data, the
ground truth, is not wrong from the beginning.
Dr. Michael Schäfers, University of Münster

“AI, if it’s truly meaningful, needs to be almost
invisible. Don’t change the reader’s method—
support it, add to it, augment it, but don’t change
it.”
Dr. Carl von Gall, Siemens Healthineers

https://knowledge.wharton.upenn.edu/article/ai-new-electricity/
Fahmy S. How we developed AutoID, Imaging Life 2021, white paper, Siemens Healthineers, https://www.siemens-healthineers.com/molecular-imaging/news
The products/features (mentioned herein) are not commercially available in all countries and/or for all modalities. Future availability cannot be guaranteed.  

Artificial Intelligence in Molecular Imaging
may be used to assist in

deriving clinically relevant and actionable information
in a fashion that is

Safe: does not cause harm, high in quality
Quantitative: accurate, reproducible, robust
Efficient: automated, operator independent
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Siemens Healthineers
Molecular Imaging

Siemens Medical Solutions USA, Inc.
810 Innovation Dr
Knoxville, TN 37932

Phone: +1 (865) 218-2000
siemens-healthineers.com

Sven Zuehlsdorff, Ph.D.
Sr. Director, Research

Siemens Medical Solutions USA, Inc.
2501 North Barrington Road
Hoffman Estates, IL 60192, USA

Mobile: +1 (773) 351-9496
sven.zuehlsdorff@siemens-healthineers.com

Sven Zuehlsdorff, Ph.D.| SHS DI MI PLM-R&D R  



AI Applications at Canon 
Medical Research USA

Vernon Hills, IL

Evren ASMA

PET Image Reconstruction & Physics



➢ Intelligent Devices

e.g. Scanners which know which region to scan for how long

➢ Intelligent Categorization

e.g. Datasets/images with high probability of having lesions and lesion locations

➢ Intelligent Algorithms

e.g. AI-based denoising or AI-inside-the-recon or AI for corrections 

➢ Decision Support 

e.g. Assisting doctors in clinical decisions

CMRU Vision for Artificial Intelligence



AI Application: PET Image Denoising

➢ 8-layer residual deep convolutional 

network

➢ Approach can generate low noise 

images from input images ranging 

from low to very high noise

➢ Trained with multiple noise levels

➢ Feature-oriented training weights 

features of interest higher during 

training

➢ Significantly improved quantitation 

over OSEM due to similar contrast 

levels but much lower noise

OSEM +GF AiCE

Chan, C., et al (2018). Noise Adaptive Deep Convolutional Neural Network for Whole-Body PET Denoising. 

2018 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2018 -

Proceedings. https://doi.org/10.1109/NSSMIC.2018.8824303

Advanced Iterative Clear-IQ Engine



AI-Based Denoising Examples
OSEM + GF

Std = 30%

AiCE

Std = 6%

BMI: 29.7

PET Dose: 13.8 mCi

Glucose: 84 mg/dl

PET uptake time: 92

Scan time: 2.5 min /bed

Recon: OSEM 4 iter, 10ss, GF

OSEM+GF:4 min/bed AiCE:2 min/bed

Std = 11%

SUVmean= 4.1

Std = 7%

SUVmean= 5.4

CR = 

29%

CR = 48%

Significant noise 

reduction with 

AiCE compared 

to OSEM + 

Gaussian post-

filtering

Improved 

contrast-to-

noise ratios in 

half the scan 

time



AI Application: Network-Based Data-Driven Gating 

➢ Neural-network-based data driven 

gating clusters very short (0.5 sec) scan 

segments based on their network 

features

➢ One could also apply PCA on network 

features to generate network-based 

gating signals for users

➢ No optical or pressure-sensing external 

motion trackers are used

➢ The result of clustering network features is 

“AI-gating” – not displacement or phase 

gating

Li, T., Zhang, M., Qi, W., Asma, E., & Qi, J. (2020). Motion correction of respiratory-gated PET images using 

deep learning based image registration framework. Physics in Medicine and Biology, 65(15). 

https://doi.org/10.1088/1361-6560/ab8688

UC Davis – CMRU collaboration
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AI Application: Network-Based Scatter Correction

UC Davis – CMRU collaboration

-map

Non-scatter corrected 

TOF image
DCNN

-

“Scatter” 

image
Forward 

projection

Scatter corrected TOF 

image estimate

Scatter sinogram 

estimate

• Rapid scatter sinogram estimate for all reconstruction settings

• Avoids complicated physical and mathematical modeling
Xie, Z., Qi, W., Zhang. X.., Li T., Spencer B.A., Leung E.K., Wang G., Badawi R.D., Cherry S.R, Asma E., Qi J.,   

(2022). Hybrid scatter correction for PET image reconstruction, SNMMI Annual Meeting submission



AI-Based Scatter Correction Examples

Non-scatter 

corrected 

image

Single scatter 

simulation 

scatter 

correction

Neural network-

based scatter 

correction

P1279 P2209

• Neural network based scatter correction within 10% of SSS scatter correction in liver and hotspots

• Neural network based scatter correction differs about 25% with SSS scatter correction in lungs & cold regions



➢ AI-based image denoising for CT 

 Lower dose scans

➢ AI-based image denoising for MR

 Lower field-strength scans 

➢ AI-based image denoising for ultrasound

➢ “AutoStroke” for image analysis and categorization 

 Detection of signs of ischemic and hemorrhagic stroke

➢ Altivity for combining AI based approaches

 AI-based image reconstruction + workflow automation 

Other AI Applications at CMRU

Together with PET AI, 

these form “Advanced 

Intelligent Clear-IQ 

Engine” (AiCE) for all 

modalities



➢ Scan time per bed positions and gates requiring motion correction 

are automatically determined by AI

➢ AI-based data-driven gating for beds requiring motion correction

➢ AI-based scatter and randoms correction for all bed positions

➢ AI used to improve CT-based attenuation maps for all beds

➢ AI-based denoising or AI-inside-the-reconstruction approaches for 

image reconstruction

➢ AI for determination of images with high likelihood of containing 

lesions and possible lesion locations

Future Vision: Full Use of AI in PET



Academic-Industry 
Partnerships

Paul Kinahan, PhD, FIEEE, FAAPM, FSNMMI, FAIBME

Vice-Chair for Research

Department of Radiology

University of Washington



Disclosures and relevant background

Current

• Co-founder of PET/X LLC

• NIH Academic-Industry Partnership grant with GE Healthcare and GE 
Research

Completed

• 3 NIH Academic-Industry Partnership grants

• About 12 industry-sponsored research grants or projects with six companies

• Several industry advisory boards (all unpaid)

Other

• Oversight of UW Department of Radiology industry-sponsored research 
grants or projects



Why participate in Academic-Industry Partnerships? 

Industry

Access to viewpoint of customer 
base, i.e. what is needed

Access to expertise

Access to data

Test products and publicize

Co-development

License existing ideas

Leverage relationships into sales

Academia

Access to leading-edge technology

Ability to influence product 

development

Access to expertise

Access to research tools

Ability to interact with 

hardware/software at a more 

basic level

Funding for research



Building Extended Academic-Industry 
Partnerships 

Partnerships can be transactional, i.e. “one and done” 

Ideally, however, they are based on multiple projects over an extended 
period

Extended partnerships can build confidence, respect, and trust, which 
in turn can lead to deeper and more speculative discussions

Some amazing developments have come out of extended Academic-
Industry partnerships, e.g. PET/CT and several other examples



Types of research partnerships
• Data access

• Physician use, review, and publishing on products

• Unfunded collaborations

• Jointly funded projects

• Material exchange collaborations resourced by industry

• Funding

• Use of software or equipment or other

• Requires “Fair market value” in exchange to be 
compliant, i.e. no gifts

• Licensing



Pathways to partnerships
Opening effective communications

• Start by understanding motivations and 
constraints in both directions

• Industry partners typically have a better 
understanding of motivations and constraints 
than academics

• Industry partners typically manage 
expectations more effectively

• Industry partners are typically more attentive 
to risk mitigation (of all kinds)

• Can often require repeated conversations and 
effort

• Important to stay in regular contact

Academic 
priorities

Industry 
priorities

High value 
areas

A good 
place to 
get to



Challenges in Academic-Industry Partnerships

• Time scales can be very different

• People change jobs or institution or company

• Failure to meet targets or provide deliverables

• Priorities change or key personnel have reduced time

• Delays in completing required documents (contract, COI review, IRB, 
DUAs etc.)



Issues for Academic-Industry Partnerships in AI

• Many newer and smaller companies

• Lots of (new) marketing that can confound understanding

• Lack of curated data for training, especially in molecular imaging

• Complexity of accessing data 

• Data use agreements (DUAs)

• PHI removal from DICOM and EHR

• Access inside hospital firewalls

• How to evaluate robustness and reproducibility

• How to test for clinical ‘fit for use’



NIBIB Medical Imaging and Data Resource Center (MIDRC)

A multi-group NIBIB-funded project with AAPM, ACR, and RSNA, as well as 23 other institutions

• Imaging and data commons through technology development projects 

• intake portal(s) through RSNA and ACR

• imaging and data repositories/registries

• a public access portal on the Gen3 data ecosystem

Data commons enabling researchers to address topics no single archive could yield independently

for rapid and flexible collection, AI research, and dissemination of imaging and associated data

Initial research projects to expedite translation of AI from scientific findings and technical resources to 
public dissemination and clinical benefit



Many Imaging centers

CT

XR

DICOM images
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Curation
Annotation
Quality Assessment
Sequestration /Diversity
Extraction of search data
Presentation of search data

AI/ML algorithm 
developers

Cohort selection
Image download
Testing
Challenges
Guidelines
Metrics

As of 2022-02-10



The need for curation of images and DICOM meta-data

Subset of a public COVID-19 DICOM chest 
x-ray image collection showing variations in 
image quality and view directions and body 
part (i.e. the knee image near center)

Section of > 350 Study Descriptions from 
DICOM headers for 5,500 Abdominal CT 
scans of patients with Covid-19, listed in 
order of frequency

BODY PART STUDY DESCRIPTION Total # %

Head CT HEAD WO CONTRAST 660 6%

Chest CTA CHEST (PE STUDY) W CONTRAST 427 4%

Head Head^HEAD (Adult) 323 3%

Abdomen CT ABDOMEN PELVIS W CONTRAST (ROUTINE) 310 3%

Head Vascular^PE_STUDY (Adult) 209 2%

Chest CT CHEST WO CONTRAST 166 1%

Abdomen Abdomen^ABD_PEL_WITH (Adult) 146 1%

Head Head^DE_HEAD_WITHOUT_Customized (Adult) 134 1%

Chest CT CHEST WITH CONTRAST 122 1%

Chest CT CHEST ABDOMEN PELVIS W CONTRAST (ROUTINE) 114 1%

Abdomen CT ABDOMEN PELVIS WO CONTRAST (ROUTINE) 111 1%

Head Head^ROUTINE_DE_HEAD (Adult) 108 1%

Abdomen Abdomen^CT_AP_WITH (Adult) 99 1%



MIDRC challenges encountered and lessons learned

• De-identification is resource intensive, and can be carried too far

• There is no national standard for description of imaging studies

• Data quality considerations include both the images and the DICOM 

meta-data

• We do not always need ‘high-quality’ data, rather we need data with 

measured quality

• Measuring quality for all images provided to MIDRC data not feasible

oWide assortment of CT and XR scanner makes and models

oSubstantial inter- and intra-center variation in imaging protocols

oWe need ‘helper AI’ for curation of large-scale data sets



The clinician’s needs from nuclear medicine AI

Dr. Michael J. Morris

Prostate Cancer Section Head

Member and Attending

Memorial Sloan Kettering Cancer Center
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Why do clinicians order imaging?

• Staging and treatment planning

• Prognostication

• Prediction

• Response assessments



Prostate cancer – a biologically heterogeneous 
disease that presents diverse clinical risks

The clinical quandary in prostate 

cancer: Is cure necessary in those 

for whom it is possible, and is cure 

possible in those for whom it is 

necessary?”

-- Willet Whitmore 

Arap et al., NEJM 2020



Risk assessments for localized disease

Imaging: mpMRI

Serum biomarkers

Watson, Future Oncol, 2016

Genomic Classifiers



Prostate cancer becomes increasingly biologically 
complex as it progresses

Gundem et al, Nature 2015; Abida et al., JCO Precision Oncol, 2017



Bone scan vs. PSMA PET of the same patient



Molecular imaging allows us to appreciate lesional 
diversity and prognosticate

PET imaging using FDG and 

FDHT
Likelihood of Survival

Fox et al, JAMA Oncol 2018



AI deliverables: staging and prognostication

• Volume: 

– More accurate, quantifiable, clinically meaningful descriptors of 

disease volume

• Distribution:  

– Quantitative expressions and models of the clinical import of disease 

distribution (Liver > lung > bone > nodes)

• Biology: 

– Which are the lethal lesions?

– What is the intrapatient and interlesional and intralesional

heterogeneity, and what does that tell us about outcome?



AI and Prediction… key for the era of theranostics

O’driscoll at al Br J Pharmocol, 2016

Present across disease sites and disease spectrum

Conserved in most normal tissues



Lu-177 PSMA617 radioligand therapy prolongs life, 
delays progression and delays SSE’s1,2

38% reduction in risk of death

50% reduction 

in risk of SSE

60% reduction in risk of progression or death

1. Morris MJ, et al. J Clin Oncol. 2021;39(18_suppl):LBA4-

LBA4. 2. Sartor O, et al. NEJM. 2021;(NEJMoa2107322). 

doi:10.1056/NEJMoa2107322. 

In the Phase 3 VISION trial, 

17.4 % patients were treated 

with Radium-223 prior to 

randomization in trial



Mechanisms of disease resistance: Heterogeneity of 
PSMA Expression (i.e., dose delivered)

Iravani et al., Prost Ca and Prost Dis, 2020



AI’s role for predictive biomarkers

• Lesional target expression by:

– Volume

– Organ (bone vs. liver vs. node)

• Interaction of multiplicity of imaging modalities

• Predicted radiation dose to lesions and normal organs

• The deliverable is a model that tells us whom to treat, and at what dose, 

and then how they are responding?



Response Assessments

https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=31986

Kyriakopoulos, JCO 2019

https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=31986


AI’s deliverable for response assessments

• Response completeness/depth

• Response kinetics

• Uniformity

• A model by which you can generate a quantitative metric, from 

which you can distinguish good vs. poor responses (treat vs. 

not treat decision)



What I Want From AI
Clinical Perspective

Eliot Siegel, MD, FSIIM, FACR
University of Maryland School of Medicine Department of Diagnostic Radiology and Nuclear 

Medicine
Chief Imaging VA Maryland Healthcare System 1



“Ground-Breaking” Filmless Department and Pandora’s 
Box in 1993

Any Image Any Where Any Time
Digital Enhancement and Diagnosis

Ironically, Ground-Breaking AI is the Pandora’s Box 
of the 2020’s
Exciting Promise of: Improved Accuracy, Efficiency, 
Safety and Information Exchange

2



We Still Have Not Realized the Promise of AI in 2022
What I Have from AI Today

• Detection of abnormalities
– Lung nodules, peripheral perfusion defects on lung perfusion scan

• Diagnostic decision support
– Probability those lung nodules are cancer?
– Probability of PE estimated using nuclear lung scan

• Quantification
– Measurement of lung lesions
– SUV burden of lymphadenopathy on PET/CT

• Triage
• Segmentation

3



What Do I Want From AI

• Analysis over time and not for single exam which corresponds to what we actually do as 
nuclear medicine physicians especially for oncology applications
– Task is evaluating change over time as often as making a new diagnosis
– AI algorithms have been designed to plot change over time but not take change over time into 

consideration
– This is one of the most critical flaws of systems today

• Customization to become optimized for a particular institution, nuclear medicine physician, 
region, patient population etc and to reduce bias, follow my gold standard rather than 
someone else’s

• AI integrated with my workflow invoked dynamically when I need it, not only PACS but 
clinical workflow

• AI can be consumed locally as well as from the cloud
• AI that takes into account a priori probability of disease e.g. PE determination or PLCO 

example
• AI that makes it more efficient for me to report

4



• AI that increases reading efficiency and does advanced hanging protocols
and generates impressions from my observations and findings

• AI that is explainable where I can intuitively understand that it is working 
and how

• AI that can give me its level of confidence 
• AI that does population health/screening, e.g. imaging for Alzheimer’s 

disease, maybe?
• Quality assessment AI so I can improve quality of diagnostic studies
• Natural language understanding especially new transformer natural 

language understanding models
– Empathy

5



What Are Some Current Non Pixel Based Ground 
Breaking Advances in AI for Medical Imaging?

6



AI for Reduction in Patient 
“No Show” Rates: 

Implications for Pandemic 
No Show Predictions

• Chong et al demonstrated that their 
machine learning predictive analytics 
program had an AUC of 0.746 in 
predicting no shows resulting in a 
17% reduction in the no show rate 
after 6 months of deployment

• Applied across the board, especially 
for high tech studies this could result 
in major improvements and 
importantly adaptive learning as 
reasons for no shows change with 
arrival and departure of pandemic 
waves of disease

7



Automation of Customized Report Impressions

● A surprising amount of time is spent dictating radiology 
impressions -- up to one-third of the entire time spent on each 
study, depending on modality

● AI can be used to automatically generate report impressions 
customized to each individual radiologist’s language and 
preferences

● Based on initial results savings in the range of a 24% of the total time radiologists spend on CTs --

while also decreasing radiologists’ mental workload and risk of burnout



What if AI Only Read Cases Where It Was Very 
Confident in its Detection/Diagnosis?

9



Improving Workflow Efficiency 
for Mammography with AI 

Screening out Normals

• Kyono et al documented Deep 
Learning could achieve a 0.99 
negative predictive value while 
excluding 34% of mammograms 
when there was a 15% 
prevalence of disease but more 
importantly could interpret 91% 
of negative mammograms when 
prevalence of cancer was 1%
– Thus reducing the number of 

studies a mammographer would 
need to read by up to 91% 

10



What Will Be the Initial “Killer App” for AI 

(Deep Learning) in Diagnostic Imaging?

• So, it turns out that we can not only use Deep Learning to detect and diagnose 

and quantify, but we can also create images using AI

• Immediate benefits from ubiquitous adoption by manufacturers of Deep Learning 

for Image Acquisition and processing

– Major MRI and CT and nuclear medicine vendors will soon adopt Deep 

Learning to substantially improve image quality, especially texture and reduce 

scan times and doses

– Iterative reconstruction sacrifices texture for reduced noise but Deep Learning 

can optimize image quality without reduction in important diagnostic features

– Model based iterative reconstruction optimizes trade-offs but is highly 

computationally intensive and this has been a major limiting step in its use in 

day to day scanning

11



AI Has and Will Revolutionize 
Image Acquisition in Diagnostic 

Imaging

• Pandemic will increase pressure to scan patients more rapidly 
with reductions in scanning time decreasing patient and staff 
exposure and improving efficiency

• AI, “Deep Learning” for reconstruction of CT, MRI, PET, 
conventional radiography will become the “killer app” of 2022

12



AI Towards Precision Medicine
Selective/Smart Screening

• Screening can be smarter by more precisely identifying 
populations at risk for certain diseases

• This will decrease the number of patients that need to be 
screened while increasing the yield of screening for disease

13



A Priori Probability of Disease: PLCO
• Published in 2009, the PLCO Screening Trial enrolled ~155,000 participants 

to determine whether certain screening exams reduced mortality from 
prostate, lung, colorectal and ovarian cancer

• The Prostate, Lung, Colorectal and Ovarian Cancer (PLCO) Screening Trial 
dataset provides an unparalleled resource for matching patients with the 
outcomes of demographically or diagnostically comparable patients

• These matched data can be used to inform a more sophisticated, 
personalized diagnostic decision-making process by tailoring imaging and 
testing follow-up intervals or even guiding intervention and prognosis

• They can also be incorporated into CAD algorithms to improve diagnostic 
efficacy by provided a priori likelihood of disease information. 



PLCO Dataset
Additional Criteria: African American, Native Hawaiian or Pacific Islander, Family or Personal History Cancer, COPD



PLCO Participants Who Qualify for NLST:
Smokers 55 to 74 Years Old

17



Beyond Automated Image 
Interpretation

• Much of the AI literature has been devoted to improved image 
interpretation
– Lung nodules, pediatric bone age, intracranial hemorrhage, fracture detection

• Many AI Algorithms focus on quantitative assessment or on image 
analytics and quantification such as radiomics
– Characterizing morphology or texture to predict tumor type, histology, grade, 

prognosis, etc.

• Increasingly AI algorithms will focus on enhanced efficiency/productivity in 
addition to enhanced accuracy/decision support

18

Courtesy Dr. Dalai’ PACS Blog



Examples Deep Learning Based on 
Availability of Academic Test Sets

• COVID

• Bone age

• Lung nodules – LIDC, RIDER, 
NLST

19



Examples Algorithms Developed Based on Clinical Need

• PET/CT adenopathy, marrow 
evaluation, renal function, cardiac 
and brain uptake

• Perfusion scanning

• Automated renal flow analysis

• Fractional flow reserve analysis

20
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Berkman Sahiner Slides

• Killer App in next few years

22
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Current and Potential 
Population Health Apply 

for all Patients

• Bone mineral density

– Vertebral body fracture

• Coronary artery calcification

• Abdominal aortic aneurysm detection

• Gallstones

• Renal calculi

26
Vertebral bone quality score predicts fragility fractures 

independently of bone mineral density.  Ehresman et al



Image Quality 
Control

• Cardiac imaging

• PET uptake quality, evaluation of 
image fusion

• CT dose vs. noise quality control

• PSMA imaging quantification

• Brain PET analysis ahd quantification

27



What Do We Need from Next 
Generation AI Clinically?

• Improve efficiency/productivity

– What’s it like to practice nuclear 
medicine nowadays?

– Our previous research has 
suggested nuclear medicicne
physicians spend 85% of their 
time on clerical/admin/repetitive 
tasks and only 15% on image 
interpretation!

• Radiology scribes are being 
used by some practices to 
increase that 15% to beyond 
50% resulting in major 
improvements in reading times



What We Really Want is Some Empathy

• According to a study done by the Mayo Clinic in 

2006, the most important characteristics patients feel 

a good doctor must possess are entirely human

• According to the study, the ideal physician 

is confident, empathetic, humane, personal, 

forthright, respectful, and thorough

• Watson may have proved his cognitive superiority, 

but can a computer ever be taught these human 

attributes needed to negotiate through patient fear, 

anxiety, and confusion? Could such a computer ever 

come across as sincere?

29



Conclusion
AI From Groundbreaking to Invisible?

• AI will undoubtedly have a major positive impact on efficiency, 
accuracy, discoverability, safety, and efficacy in diagnostic 
imaging, which will revolutionize the practice of nuclear 
medicine over the next decade

• This will allow our specialty to stay relevant and indeed critical 
as we enter the dawn of the era of personalized/precision 
medicine

31



Conclusion
AI From Groundbreaking to Invisible?

• The transition from film to digital imaging almost 30 years ago 
brought about not only ubiquitous access to images but also 
the tantalizing promise that “artificial intelligence” could be 
utilized for these digital images to achieve earlier and more 
accurate detection, diagnosis, and treatment

• 30 years later, however we are just beginning to realize the 
groundbreaking potential of AI

32



What I Want From AI
Clinical Perspective
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Professor Biomedical Engineering UMCP



Prof Geoff Currie, SNMMI AI Summit 2022

SNMMI Artificial Intelligence Summit 2022: 

What Do Nuclear Medicine Technologists

@DrGeoffCurrie
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Professor in Nuclear Medicine at Charles Sturt University

Professor (adjunct) in Radiology at Baylor College of Medicine 



Prof Geoff Currie, SNMMI AI Summit 2022

AI and the NMT!

Not while ever 

the world is flat!

Not giving in to 

‘the man’ so 

they can control 

us or make 

more money!

Science denial Conspiracy

I’ll never be able 

to keep up with 

technology! I’ll 

be redundant.

Pessimist

The efficiencies 

will allow me to 

spend more 

time providing 

quality patient 

care!

Optimist

There will be 

opportunities to 

improve workflows 

and diversify of our 

responsibilities! I 

want to get ahead 

of the curve.

Opportunist
Not on my 

watch! I am still 

fighting to keep 

wet processors.

Guardians of 

the Galaxy

That’s for the 

doctors and 

physicists to 

worry about. 

Head in the 

sand!

Ostrich

A lot of work to do 

but there are 

opportunities to 

improve 

outcomes if we 

manage potential 

risks!

Realist



Prof Geoff Currie, SNMMI AI Summit 2022

Opportunity / Inclusion

• Not all NMTs will be interested or have something to offer, 

but there are some pretty switched on NMTs that have a lot 

to offer this space. Inclusivity = diversity

• NMTs are front line for clinical application of 

commercialised algorithms as is current practice with SaMD

(software as medical device). 

• Data and information management as per PACS and RIS 

systems.

• Image manipulation and analysis (will implement as GUI) 

is often NMT driven. What are the insights of the users?

• Validation of algorithms as part of a research team for 

those working in that research domain (very few).

• Possible role extension for data curation / stewardship.



Prof Geoff Currie, SNMMI AI Summit 2022

NMT Needs from AI

• Representativeness and voice

• Nothing about us, without us!

• Avoid imposing technology and change 

• Recognise as stakeholder

• Common language

• Transparency of application

• Inclusivity

• Education and understanding

• Awareness

• Security of position and role



Prof Geoff Currie, SNMMI AI Summit 2022

Recent Survey

• Concerns needing addressing:

• Medico-legal issues

• Ethics

• Data privacy

• Data diversity

• Need for education

Important or higher rating



Prof Geoff Currie, SNMMI AI Summit 2022

Recent Survey

• Need for education
Minimal understandingNo understanding

Current Understanding

Desired Understanding

Some understanding Competent Proficient Expert

80 : 20



Prof Geoff Currie, SNMMI AI Summit 2022

Not Fall Behind Radiographers!



Prof Geoff Currie, SNMMI AI Summit 2022

Summary

NMT perception of 

learning AI

Reality of what 

NMTs need to know



Prof Geoff Currie, SNMMI AI Summit 2022

Thanks

Data is the new oil and AI the new electricity



What FDA requires and desires for a 
nuclear medicine diagnostic AI Tool? 

Dan Krainak, Ph.D.
Division of Radiological Health (DRH)

Office of Health Technologies 7 8 (OHT8)
Office of Product Evaluation and Quality (OPEQ)

Center for Devices and Radiological Health (CDRH)
US Food and Drug Administration (FDA)

SNMMI Artificial Intelligence (AI) Summit
Virtually March 21-22, 2022
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FDA’s Center for Devices and Radiological 

Health (CDRH)

2

.. protect and promote the health of the public by 

ensuring the safety and effectiveness of medical 

devices and the safety of radiation-emitting 

electronic products…

…We provide consumers, patients, their caregivers, and providers with 

understandable and accessible science-based information about the 

products we oversee…

We facilitate medical device innovation by advancing 
regulatory science, providing industry with predictable, 
consistent, transparent, and efficient regulatory pathways, and 
assuring consumer confidence in devices marketed in the U.S.
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Nuclear Medicine Devices

• Not diagnostic radiopharmaceuticals (those are 
drugs) 

• Include imaging hardware and software
– Acquisition hardware and software
– Post-processing software

• Generally, a mixture of Class I and Class II
• Most post-processing software is Class II
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Risk-based approach to device classification

Classification depends upon the degree of regulation 

necessary to provide reasonable assurance of safety and 

effectiveness 

Class I: low risk, general controls

Class II: moderate risk, general controls + special controls 

Class III: high risk, general controls + premarket approval
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Guidance for Industry

Guidance for the Submission of

Premarket Notifications for

Emission Computed Tomography

Devices and Accessories

(SPECT and PET) and Nuclear

Tomography Systems

Document issued on: December 3, 1998
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Artificial Intelligence (AI) Tool

• What is an Artificial Intelligence (AI) tool in the 
context of nuclear medicine?

– If there’s software, there might be AI

• What are the regulatory expectations for AI 
Tools?

– “It depends”
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WORKSHOP

Virtual Public Workshop – Transparency of

Artificial Intelligence/Machine Learning-enabled

Medical Devices

October 14, 2021

April 2019

WORKSHOP

Public Workshop – Evolving Role of Artificial

Intelligence in Radiological Imaging

February 25-26, 2020

FDA STATEMENT

Statement from FDA Commissioner Scott

Gottlieb, M.D. on steps toward a new, tailored

review framework for artificial intelligence-

based medical devices

April 2019

Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices | FDA

List of more than 300 entries and growing

Good Machine Learning Practice for Medical Device Development:

Guiding Principles

October 2021

FDA on AI

More to come … we’re thinking about it

https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabled-medical-devices
https://www.fda.gov/media/153486/download
https://www.fda.gov/media/153486/download
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Radiological imaging – AI to date
• Computer assisted detection/diagnosis/triage

– Task-specific
– Identifies, marks, highlights, categorizes, characterizes, notifies, priorities, etc.
– Intended to augment or improve physician performance

• Segmentation 
– Outline normal and/or abnormal features

• Acquisition optimization 
– For example, patient positioning, FOV optimization, hardware parameter 

selection

• Image enhancement 
– For example, image reconstruction, denoising

• Quantitative imaging
– For example, ejection fraction based on ultrasound images
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Classification of AI

• Generally, devices with AI follows the 
classification of the technology regulated 
without AI

• Again – most devices with AI in the nuclear 
medicine diagnostic space are anticipated to be 
Class II devices – require 510k notification
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510(k) premarket notifications

Substantially equivalent (SE) (21 CFR 807.100(b)):

same intended use AND same technological characteristics 

OR

same intended use AND different technological 

characteristics (e.g., change in material, design, energy 

source, software) AND these differences do not raise 

different questions of safety and effectiveness
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“Tool type” claims

• For most 510(k) imaging devices, CDRH requests that 
sponsors provide validation consistent with the 
technological characteristics and intended use of the 
device

• Tool type intended use permit device manufacturers to 
make medical devices available to the community faster

• Tool claims encourage clinical testing of specific intended 
uses not called out in the indication for use statement by 
the clinical community
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Quantitative tools and computer-aided ___

• Tool example

– Calculate relative SUV (quantitative analysis)

• Diagnostic intended use

– Lesion identification and classification 
(benign/malignant) = CAD/intended use

– Disease status classification = CAD/intended use
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Types of evidence to support 
substantial equivalence

• Phantoms (including both physical and digital 
reference objects) – some challenges with AI

• Simulations (realistic models)

• Clinical data
– Reader studies

– Validation of quantitative imaging
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Transparency in AI & 510(k) Summaries

Validation datasets
• Summary test statistics or other test results including acceptance criteria or other information 

supporting the appropriateness of the characterized performance
• The number of individual patients images were collected from
• The number of samples, if different from above, and the relationship between the two
• Demographic distribution including

o Gender
o Age
o Ethnicity

• Information about clinical subgroups and confounders present in the dataset
• Information about equipment and protocols used to collect images
• Information about how the reference standard was derived from the dataset (i.e. the “truthing” 

process)
• Description of how independence of test data from training data was ensured

Information about the training dataset should also be included as part of the device description
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• In medical imaging, “image quality” is a measure of how much information 
an image gives us about a patient

→ Needed image quality is task-specific

There are a variety of tracers, hardware, and software options that include 
user-selectable parameters for configuration, for many different target 
anatomies, for a variety of patient indications, and a variety of clinical tasks

• A clinical study to demonstrate diagnostic effectiveness is typically not
requested as part of the premarket evaluation of PET hardware/software

→ What’s the right endpoint or the right clinical task?

Image Quality
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Are these images of adequate diagnostic 

quality?

Which of these images has the best quality?

NMR Images courtesy of Weimin Zhou and Mark Anastasio

Image Quality

A B

C D
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CAUTION: Image quality may be hard to 

identify 

• Two of these real MR images give 

information about what is inside two real 

patients.

• Two of these images are generated by deep-

learning neural networks, are completely 

fake, give no information about any patient, 

and therefore have NO image quality.

NMR Images courtesy of Weimin Zhou and Mark Anastasio

Image Quality

A B

C D
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CAUTION: Image quality may be hard to 

identify

• Two of these real MR images give 

information about what is inside two real 

patients.

• Two of these images are generated by deep-

learning neural networks,  are completely 

fake, give no information about any patient, 

and therefore have NO image quality.

NMR Images courtesy of Weimin Zhou and Mark Anastasio

Image Quality

REALFAKE

REAL FAKE

A B

C D
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Nuclear Medicine AI

• Have not cleared any end-to-end black box image 
reconstruction methods

• Software as a medical device (SaMD) and software 
in a medical device (SiMD)

• Some features cleared include
– Denoising, post-processing filters (image space)

– Methods integrated into iterative reconstruction 
(sinogram)
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Summary

• AI has many different meanings in the context 
of nuclear medicine

• Most hardware and some software are based 
on “tool type” claims – but some require more 
rigorous evaluation

• FDA emphasizes transparency in the context of 
AI based on feedback from the community
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GUIDANCE DOCUMENT

Requests for Feedback and Meetings for Medical Device 
Submissions: The Q-Submission Program

Guidance for Industry and Food and Drug Administration Staff

JANUARY 2021

Requests for Feedback and Meetings for Medical Device 
Submissions: The Q-Submission Program | FDA

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/requests-feedback-and-meetings-medical-device-submissions-q-submission-program




Keyvan Farahani, PhD
Center for Biomedical Informatics and 

Information Technology

farahani@nih.gov
datascience.cancer.gov

SNMMI AI Summit 2022

NCI Imaging Data Commons
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Outline

▪ Cancer Research Data Commons (CRDC)

▪ Imaging Data Commons (IDC)

▪ IDC imaging use cases 
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http://cancerimagingarchive.net 

TCIA Overview

• New collection proposals are reviewed by the TCIA Advisory Group for 
quality and utility

• 140+ collections - data from > 55,000 subjects available for download

▪ Preclinical imaging for multiple species

• Covers radiology, radiation therapy, and pathology image modalities 

• Wide variety of cancers + phantoms

• Most have associated supporting data

▪ Demographics/outcomes/therapy

▪ Image Analyses (annotations, segmentations, features)

▪ Links to Genomics/Proteomics

• REST API

• TCIA publishes data (DOI’s link to collections) and is a recognized 
repository for a growing number of scientific journals.
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National Cancer Data Ecosystem for Sharing and Analysis

Cancer MoonshotSM

Overarching goals – Jan. 2016

❑ Accelerate progress in cancer, including 
prevention & screening

• From cutting edge basic research to wider uptake 
of standard of care

❑ Encourage greater cooperation and collaboration

• Within and between academia, government, and 
private sector

❑ Enhance data sharing

➢ Build a National Cancer Data Ecosystem

▪ Essential underlying data science infrastructure, 
standards, methods, and portals for the Cancer 
Data Ecosystem

▪ Enhanced cloud-computing platforms

▪ Services that link disparate information, including 
clinical, image, and molecular data

▪ Establish sustainable data governance to ensure 
long-term health of the Ecosystem.

▪ Develop standards and tools so that data are 
interoperable.
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Cancer Research Data Commons (CRDC)

• Virtual, expandable, secure research 
infrastructure

• Storage and elastic compute

• Analysis, sharing, and archival of results

• Cross-domain analysis of large datasets 

A data science infrastructure to connect 
repositories, analytical tools, and knowledge bases

datacommons.cancer.gov
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Cloud-based 
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The NCI Cloud Resources
Three resources connecting NCI data and compute in the cloud
• Access to large cancer data sets without need to download
• Access to workspaces, analysis tools, and pipelines
• Ability for researchers to bring their own data and tools

▪ Access and analyze 
data from a dozen 
genomics, 
proteomics, and 
imaging datasets 
without 
downloading

▪ Upload your data to 
the cloud

▪ Perform large scale 
analysis using the 
elastic compute of 
commercial cloud 
platforms

▪ Upload your tools to 
the cloud, create 
your own workflows

▪ dbGaP-authorized 
users can connect to 
controlled access 
datasets

▪ Systems meet strict 
Federal security 
guidelines

firecloud.terra.bio

isb-cgc.org

cancergenomicscloud.org

NCI Cloud Resources

Data Compute Security



Cloud 
Repositories

Cloud 
Resources

Broad

Institute for
Systems Biology

Seven 
Bridges

Analytic
Tools

User 
Workspaces

8

Data Commons

Cancer Research Data Commons 
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NCI Imaging Data Commons (IDC)

Cloud resource that connects researchers with:

▪ Cancer image collections

▪ Robust infrastructure with imaging data, metadata and 
experimental metadata from disparate sources

▪ Resources for searching, identifying and viewing images

▪ Additional data types in other CRDC nodes

▪ Connectivity to NCI Cloud Resources for imaging and 
multi-modal cloud computations

Implementation:
• Google Cloud Platform
• OHIF viewer
• Non-restrictive Open Source 
• DICOM as prime standard
Production release: September 2021



IDC leadership

David Pot

Ron Kikinis Andrey Fedorov

Hugo Aerts

Bill Longabaugh
Steve Pieper

Rob Lewis

André Homeyer

David Clunie

Todd Pihl
Keyvan Farahani

Ulrike Wagner
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IDC portal: imaging.datacommons.cancer.gov
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IDC in Google Public Dataset Program

https://console.cloud.google.com/

nci-idc



Google DLP
De-ID 

Data w/ synthetic PHI
[MIDI Project 1]

Independent 
verification

De-ID pipeline and performance evaluation
[MIDI Project 2]

Medical Image De-Identification Initiative (MIDI)*
Projects 1 and 2

Rutherford, et. al., Nature Sci Data 2021

*MIDI is independent of IDC.

Overall Goal: To address the need for a scalable, automated, AI-based image de-ID



Artificial Intelligence & IDC

● IDC can play a central role by providing data to enable end-to-end 
transparent and reproducible AI pipelines for cancer imaging.

● Easy access to high quality, standardized, de-identified imaging and 
metadata in IDC that can be combined with fully reproducible AI pipelines 
in cloud based environments. 

● AI researchers are empowered to reproduce published results, provide 
materials for research, training and education purposes, as well as guide 
overall developments of the IDC platform.

● Selected AI use cases for several clinical scenarios in cancer imaging are 
being developed by IDC and collaborators to highlight these capabilities.



Data 
Retrieval

Data 
Investigation

Environment
Set-up

Experiment 
and Results 

Analysis

IDC AI workflow

Google Cloud Storage and 
BigQuery

Google Cloud Platform
and IDC Viewer

Google VMs, AI Notebooks
and Google Colab



Use Case I: Lung Cancer Prognosis
AI to predict Non-small Cell Lung Cancer Patient 2-year survival

● Trained and tuned on institutional data
● Tested on public data (NSCLC-Radiomics) available on IDC

Challenges

● Replicate exactly the pre-processing pipeline
● Dataset evolved in the meantime (new segmentations)

➔ Successfully replicated the results in Hosny et al. 

Hosny et Al. - Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study (PLOS Medicine, 2018)

O
rig
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b
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n
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d
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n
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ImagingDataCommons/IDC-Examples/notebooks/nsclc-radiomics
Slide courtesy of Hosny, Fedorov, Aerts (Mass General Brigham)

https://github.com/ImagingDataCommons/IDC-Examples/blob/master/notebooks/nsclc-radiomics/nsclc_radiomics_demo_release.ipynb


Use Case II: Thoracic OAR Segmentation

Isensee et Al. - nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation (Nature Methods, 2021)

Used nnU-Net, a collection of AI models for biomedical image 
segmentation, to segment previously unseen IDC data

● Thoracic organs at risk (OAR) segmentation from chest 
CT for radiotherapy planning

Challenges:

● Set up the pipeline correctly, integration with IDC
● Pre- and post-process the data

➔ Successfully integrated different nnU-Net models 
with the IDC data on Google Cloud Platform

ImagingDataCommons/IDC-Examples/notebooks/thoracic_oar_demo.ipynb
Slide courtesy of Bontempi, Fedorov, Aerts (Mass General Brigham)

https://github.com/ImagingDataCommons/IDC-Examples/blob/master/notebooks/thoracic_oar_demo.ipynb


Artificial Intelligence & IDC - What’s Next

Continue to investigate how to promote transparency, reproducibility and reusability

➔ Promoting the usage of tools that allow easy deployment and testing of AI pipelines 

for biomedical image analysis

ModelHub.ai

monai.io

dockstore.org
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IDC Use Cases

• Essential to promote utilization of IDC/CRDC infrastructure and standards toward:

• Development of novel AI/ML tools
• Various applications in imaging – detection, diagnosis, 

and treatment planning/monitoring

• Training of next generation of imaging data scientists

• Additional cloud-credits may be available to support novel developments



www.cancer.gov www.cancer.gov/espanol

farahani@nih.gov

datascience.cancer.gov
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Big Issues in Big Data Facing NCI

Workforce and 

career development

EHR Mining

Storage – What? 

How Long? Cloud?

Security, privacy 

and de-identification

Use of challenges / 

prizes 

From Dr. Sharpless (NCI Director), May 2018
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Our Experience with Challenges - a brief history

2013 – Prostate MRI segmentation [IEEE-ISBI]
2013-2018 – Brain Tumor Segmentation (BraTS ) [MICCAI]
2014-2018 – Brain Tumor Classification and Digi Path Nuclear Segmentation (CPM) [MICCAI]
2015 – Otolaryngology Radiomics based on MRI [MICCAI]
2015 – 2018 – NCI Quantitative Imaging Network [QIN teams]
2016 – LUNGx Nodule Segmentation [SPIE]
2017 – Lung Cancer Prediction (single time point) [Data Science Bowl on Kaggle]
2017 – PROSTATEx Tumor Classification and Gleason Grade Groups [SPIE-AAPM-FDA]
2018 – Lung Cancer Prediction (two time points) [IEEE-ISBI]
2018 – Pancreatic Cancer Radiomics based on CT [MICCAI]
2018 – Otolaryngology Radiomics based on PET-CT [MICCAI]

2019 – Pancreatic Cancer DREAM Challenge [MSKCC-Sage Bionetworks]
2019 – Breast Cancer CellurlaityQ Pathology [SPIE-AAPM-FDA]
2019 – DeepLesion Identification and Measurement [NIH Clinical Center, RSNA]

Computational Precision Medicine
QIN Challenges & Collaborative 

Projects
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Past collaborators in academia and industry
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Contact:

farahani@nih.gov

mailto:farahani@nih.gov


Paul Gruenberg
Patient with Metastatic Castrate 

Resistant Prostate Cancer
Recently traveled to Germany for Lu177-PSMA-617 therapy

Strategic and Financial Advisor to BMAF – A Grand Rapids-based 
Theranostics Center



Medical Imaging and Implementation 
Science in Dynamic Systems: An NIH 

Perspective
David Chambers,  DPhil

Deputy Director for Implementation Science,

Division of Cancer Control & Population Sciences (DCCPS)
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Session Outline

▪What is Implementation Science and How Does it Relate to 
Medical Imaging?

▪Key IS Activities/Resources

▪Areas for Further Development



From Discovery to Delivery



Chambers, Vinson, & Norton, Advancing the Science of Implementation across the Cancer Continuum, 2018

IF YOU BUILD IT, THEY MAY NOT COME



Chambers, Vinson, & Norton, Advancing the Science of Implementation across the Cancer Continuum, 2018

IF YOU BUILD IT, THEY MAY NOT COME

”Not exactly 
what I was 

looking for”



An AI-Driven Medical Imaging Intervention

▪ Is only so good as how and whether. . .

▪ It is adopted?

▪ Providers are trained to deliver it?

▪ Trained providers choose to deliver it?

▪ Eligible people receive?

If we assume 50% threshold for each step. . .

(even w/perfect access/adherence/dosage/maintenance)

Impact: .5*.5*.5*.5=6% benefit

Adapted from Glasgow, RE-AIM
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Glasgow, Vogt, & Boles (1999)

More than Efficacy/Effectiveness
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Key Terms

▪ Implementation Science is the study of methods to promote the integration 
of research findings and evidence into healthcare policy and practice.

▪ Dissemination research is the scientific study of targeted distribution of 
information and intervention materials to a specific public health or clinical 
practice audience. The intent is to understand how best to spread and sustain 
knowledge and the associated evidence-based interventions.

▪ Implementation research is the scientific study of the use of strategies to 
adopt and integrate evidence-based health interventions into clinical and 
community settings in order to improve patient outcomes and benefit 
population health.



Dissemination Research

▪ How the “evidence” is created?

▪ Packaging

▪ Transmitting

▪ Receiving

▪ Turning Information into Action

▪ Many of our early efforts in “translating research into practice” jumped 
over these steps.



Studying Implementation

What?

QIs

ESTs

How?

Implementation

Strategies

Implementation 

Outcomes

Feasibility

Fidelity

Penetration

Acceptability

Sustainability

Uptake

Costs

Service

Outcomes*

Efficiency

Safety

Effectiveness

Equity

Patient-

centeredness

Timeliness

Health Outcomes

Satisfaction

Function

Health status/

symptoms

*IOM Standards of Care

Implementation Research Methods

Proctor et al 2009 Admin. & Pol. in Mental Health & Mental Health Services Research

THE USUAL
THE CORE OF

IMPLEMENTATION 

RESEARCH



Example: Lung Cancer Screening

Sample IS Challenges:

• Is lung cancer screening a 
priority?

• How to reach all patients 
who could benefit

• Fit with practice workflow
• Implementing the model 

across varied practices
• How to bill for it?
• Workforce capacity/training 

needs



Example: AI-Driven Chat Bots

▪ How does the chatbot fit into 
ongoing workflow?

▪ What is the start and end of the tech 
use?

▪ What else is present in the system to 
optimize benefit of chatbots?

▪ IT capabilities?

▪ Workforce training?

▪ How is the technology updated over 
time?

INSERT COOL GRAPHIC HERE

Source: https://blog.intakeq.com/can-healthcare-
chatbots-improve-the-patient-experience/
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The Importance of What…

What is the intervention that needs to be implemented?

A. Diagnostic tests

B. Information Dissemination/educational intervention

C. Preventive Care

D. Treatment

E. Integrated Care

F. All of the above?



The fish-bicycle conundrum…

Ref: Paraphrased from Irina Dunn, 1970



IS Models, Theories and Frameworks

Ref: Tabak, Khoong, Chambers, Brownson, 2012, AJPM
http://www.dissemination-implementation.org

http://www.dissemination-implementation.org/


Roger’s Diffusion of Innovations

Characteristics of the 
intervention

Organizational 
characteristics

Environmental 
context

Adoption 
decision

Effective 
implementation

Outcomes

CIPRS: Stetler & 
Damschroder
Theoretical 
Frameworks

Krein SL, Olmsted RN, Hofer TP, Kowalski C, Forman J, Banaszak-Holl J, et al. 
Translating infection prevention evidence into practice using quantitative and 
qualitative research. Am. J. Infect. Control 2006;34(8):507-12.



EXPLORATION

OUTER CONTEXT

Sociopolitical Context

Legislation

Policies

Monitoring and review

Funding 

Service grants

Research grants

Foundation grants

Continuity of funding

Client Advocacy

Consumer organizations

Interorganizational networks

Direct networking

Indirect networking

Professional organizations

Clearinghouses

Technical assistance  centers

INNER CONTEXT

Organizational characteristics

Absorptive capacity

Knowledge/skills          

Readiness for change

Receptive context     

Culture

Climate

Leadership

Individual adopter characteristics

Values

Goals

Social Networks

Perceived need for change

ADOPTION DECISION /

PREPARATION

OUTER CONTEXT

Sociopolitical

Federal legislation

Local enactment

Definitions of “evidence”
Funding

Support tied to federal and    

state policies

Client advocacy

National advocacy 

Class action lawsuits

Interorganizational networks

Organizational linkages

Leadership ties      

Information transmission

Formal

Informal

INNER CONTEXT

Organizational characteristics

Size

Role specialization

Knowledge/skills/expertise

Values

Leadership 

Culture embedding

Championing adoption

ACTIVE IMPLEMENTATION

OUTER CONTEXT

Sociopolitical

Legislative priorities

Administrative costs

Funding

Training

Sustained fiscal support

Contracting arrangements

Community based organizations.

Interorganizational networks

Professional associations

Cross-sector 

Contractor associations

Information sharing

Cross discipline translation 

Intervention developers

Engagement in implementation

Leadership

Cross level congruence

Effective leadership practices 

INNER CONTEXT

Organizational Characteristics 

Structure 

Priorities/goals

Readiness for change

Receptive context

Culture/climate

Innovation-values fit

EBP structural fit

EBP ideological fit

Individual adopter characteristics

Demographics

Adaptability

Attitudes toward EBP

SUSTAINMENT

OUTER CONTEXT

Sociopolitical

Leadership

Policies    

Federal initiatives

State initiatives

Local service system

Consent decrees

Funding

Fit with existing service funds

Cost absorptive capacity

Workforce stability impacts

Public-academic collaboration

Ongoing  positive relationships

Valuing multiple perspectives

INNER CONTEXT

Organizational characteristics

Leadership 

Embedded EBP culture 

Critical mass of EBP provision     

Social network support

Fidelity monitoring/support

EBP Role clarity

Fidelity support system

Supportive coaching

Staffing

Staff selection criteria

Validated selection procedures

Aarons, G.A., Hurlburt, M. & Horwitz, S.M. (2011). Advancing a Conceptual Model of Evidence-Based Practice Implementation in Public Service 

Sectors. Administration and Policy in Mental Health and Mental Health Services Research.38, 4-23. 



18

NIH Funding Opportunities

▪ R01: PAR-19-274

▪ R21: PAR-19-275

▪ R03: PAR-19-276

▪ 21 NIH Institutes, Centers, and Offices

▪ FIC, NCI, NHLBI, NHGRI, NIA, NIAAA, NIAID, NIAMS, 

NICHD, NIDCD, NIDCR, NIDA, NIEHS, NIMH, NINDS, 

NINR, NIMHD, NCCIH, ODP, OBSSR, ORWH

▪ Standing Study Section (Science of Implementation in Health 

and Healthcare (SIHH))

▪ >300 studies funded since the first round of the PARs

https://grants.nih.gov/grants/guide/pa-files/PAR-19-274.html?platform=hootsuite
https://grants.nih.gov/grants/guide/pa-files/par-19-275.html
https://grants.nih.gov/grants/guide/pa-files/par-19-276.html
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Select NCI-Funded IS Grants

https://cancercontrol.cancer.gov/is/funding/sample-grant-applications
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NCI Staff: Cynthia Vinson, April Oh 
(leads), Kelly Blake, Mindy Clyne, 
Robin Vanderpool, Amy Caplon, 
Heather D’angelo, Susan Czajkowski
and more 
https://cancercontrol.cancer.gov/IS
/initiatives/ISC3.html

*

Implementation Science Centers in Cancer Control (ISC3)

https://cancercontrol.cancer.gov/IS/initiatives/ISC3.html


Ongoing Learning from Practice Settings

Stein, Adams, Chambers. Psychiatric Services, 2016.
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Moving Forward

https://jocatorres.medium.com/innovation-a-lot-of-opportunities-480be0d81f68

• Study 
Design

• Exciting 
Areas

https://jocatorres.medium.com/innovation-a-lot-of-opportunities-480be0d81f68


Reconsidering How we Design our Trials:
The PRagmatic-Explanatory Continuum Index Summary 2 (PRECIS-2) wheel

Loudon K, Treweek S, 
Sullivan F, Donnan P, Thorpe 

KE, Zwarenstein M. The 
PRECIS-2 tool: designing 

trials that are fit for 
purpose. BMJ. 

2015;350:h2147.
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Considering D&I earlier

https://nccih.nih.gov/grants/mindbody/framework

An earlier focus on…

•Who’s going to deliver it?

•Fit with ultimate patient population

•Building in tests of training, support, adherence, mediators and 

moderators to high quality delivery

•Hybrid designs
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Hybrid designs: 1, 2, 3

Curran et al. (2013). Effectiveness-implementation hybrid. Med Care. 



TOWARDS A DYNAMIC VIEW



Traditional Assumptions

▪ Evidence-based Interventions are static

▪ System is static

▪ Implementation proceeds one practice or test at a 
time

▪ Consumers/Patients are homogeneous

▪ Choosing to not implement is irrational



Time

Expected
Effect

Efficacy

Trial

Effectiveness

Trial
D and I

Trial

“Voltage Drop” of an 

intervention as it moves 

through stages of 

development
Intervention X

Evidence

Intervention X

Evidence

Intervention X

Evidence

0

Impact

Impact

Relevance

Relevance

Chambers, Glasgow, Stange (2013), The Dynamic Sustainability Framework. Implementation Science



Time

ITV
Effect

I0 I1                                  I2 I3

“Program Drift” of a fielded intervention 

(ITV) over time, with expected decrease of 

effect 

Optimal Effect 

Intervention X

Evidence

Intervention X

Evidence

Intervention 

X’
Evidence Expected Effect 

Program Drift

Chambers, Glasgow, Stange (2013), The Dynamic Sustainability Framework. Implementation Science



Fidelity vs Adaptation?

Variable use for variable populations, settings, and purposes…



ITVa

ITV 

ITVd

ITVg

ITVc

ITVf

ITVe

ITVb

+

-

“Positive Deviance”

“Program Drift”

Time 
and 
Space

Impact

KEY: ITV = Intervention, Time and Space = variability of intervention characteristics over time and setting
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Embracing Dynamism

More



Sustainability or Evolution?

http://www.thestrut.com/2012/12/19/the-evolution-of-the-beatles-hair/

• IF MEDICINE CONTINUES 
TO EVOLVE, SHOULD 
EXISTING INTERVENTIONS 
BE SUSTAINED IN THE 
SAME FORM THAT WE’VE 
CREATED THEM?

• HOW DOES THE SYSTEM 
COPE WITH A DYNAMIC 
FIELD THAT IS CONSTANTLY 
CHANGING?

• WHERE DO WE GO FROM 
HERE?

http://www.thestrut.com/2012/12/19/the-evolution-of-the-beatles-hair/


A Dynamic Approach to Sustainability…

Chambers, Stange, & Glasgow, Implementation Science, 2013



SCALING UP INTERVENTIONS

What is it that we’re 
scaling up?  Is it asked 
for? Can it be used?
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Need: Understanding De-Implementation

Norton, Chambers, & Kramer, JCO, 2018



Selected Implementation Science Priorities

• Studies of the local adaptation of evidence-based practices in the 
context of implementation

• Longitudinal and follow-up studies on the factors that contribute 
to the sustainability of evidence-based interventions

• Scaling up health care interventions across health plans, systems, 
and networks

• De-Implementation of ineffective or suboptimal care

Connections to AI, Medical Imaging, Research/Policy/Practice?
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Implementation Science Resources
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• Consortium for Cancer Implementation Science (CCIS)
• First meeting: July 10-12, 2019, 243 participants (in-person and online)
• Second meeting: Sept 22-23, 2020, 411 participants (online)
• Third meeting: October 6-7, 2021, 800 registrants (online), Re-emergence 

from the Pandemic: Implementing Lessons Learned and Moving Ahead

• Action Teams developing “public goods” in: equity and context, learning health 
systems, global IS, policy, community participation, technology, multi-level 
interventions, and study designs; Utilizing SLACK platform

• *Small contract opportunities for key action group products 
• *Fall/Winter NCI IS Webinars will feature 3 CCIS topics 

https://cancercontrol.cancer.gov/IS/initiatives/ccis.html

https://cancercontrol.cancer.gov/IS/initiatives/iscc.html
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dchamber@mail.nih.gov
240-276-5090

@NCIDAChambers
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